
 

 

Republic of Tunisia  

 

 Doctoral school 
Science and Technology 

 
Doctoral thesis 

 
Computer Systems 

Engineering 
Order N. 21/2023 

Ministry of Higher Education, 
Scientific Research 

 
 

University of Sfax 
National Engineering School of Sfax 

 
 

 

 THESIS   

  

Presented in  

 

National Engineering School of Sfax 

 
In order to obtain the 

 

DOCTORATE 
 

In 
Computer Systems Engineering 

 
By  

Mays Kareem Jabbar Alsabah 
 
  

(Computer and Wireless Communication Engineering) 

 

 

HyperGraph Based Stable Clustering in 

VANET  
 

 
Defended on June 10, 2023 in front of the following Committee: 

 
Mrs.  Ines Kammoun Jemal 

 

 

 

 

 

 

(Professor) President 

Mr.  Faouzi Derbel  

 

 

(Professor) Reporter 

Mr.  Tarek Abbes 

 

 

(Associate Professor) Reporter 

Mr.  Mohamed Adel Alimi (Professor) Examiner 

Mr.  Hafedh Trabelsi (Professor) Supervisor  



 

 

Dedications 

 
 

To the one who taught me that the world is a struggle and its weapon is science 

and knowledge... To the one who did not spare me anything... To the one who 

strived for my comfort and success...  

To the greatest and dearest man in the universe, 

 My dear father (Kareem). 

To the one who helped me in her prayers and supplications.... To the one who 

shared my joys and sorrows with me....  

To the source of kindness and tenderness...  

To the most wonderful woman in existence, 

My dear mother (Khawlah). 

To my gift from God… the most valuable thing I have... the sweetest feeling... 

and the most beautiful joy, 

 My son (Hasan) and my daughter (Asal)…  

who shared all the difficulties with me and endured the separation of their 

friends for me... and supported me with their love..  

Without you, I would not have reached where I am now. 

 

Mays Alsabah

 

 



 

 

Acknowledgment 

I would like to start by thanking Allah Almighty for giving me strength and 

patience, and every time I get weak I find God my only refuge and the source of 

my strength... Thanks my God, for hearing all my prayers . 

I express my gratitude and thanks to my main supporter and companion on 

difficult days, my husband (Thaar). A big thanks to you because without you, I 

would not have been able to overcome all  of my difficulties. 

I am very appreciative of the honor Mrs. Ines Kammoun Jemal, Professor at ENI-

Sfax, University of Sfax, has bestowed upon me by agreeing to preside over the 

jury for my thesis defense. I would like to thank her for her interest in this work.  

My thanks are also addressed to Mr. Faouzi Derbel, Professor and chair of smart 

diagnostic and online monitoring at Leipzig University of Applied Sciences, 

Germany, and Mr. Tarek Abbes, Associate Professor at ENET’Com, University of 

Sfax, for giving me the honor to report this thesis.  

My special thanks are addressed to Mr. Mohamed Adel Alimi, Professor at ENI-

Sfax, University of Sfax, for agreeing to examine this work.  

I would like to express my gratitude to my supportive supervisor, Mr. Hafedh 

Trabelsi, Professor at ENI-Sfax, University of Sfax, for his enthusiasm for the 

work and for his support, encouragement, and patience. He continuously 

encouraged me and was always willing to assist  in any way throughout my Ph.D. 

study. 

 



 

 

 

 

 

 بسم الله الرحمن الرحيم

ُ مِن فضَلِْهِ ويَسَتْبَشِْروُن   "  "فرَحِِينَ بِماَ آت اَهمُُ اللَّه

مصدق الله العظي    

  



 

 

List of publications 

 

Articles Published in international journals 

1. M. K. Jabbar and H. Trabelsi, “A novelty of Hypergraph Clustering Model (HGCM) for 

Urban Scenario in VANET,” IEEE Access, 2022.  

2. M. K. Jabbar and H. Trabelsi, “Clustering Review in Vehicular Ad hoc Networks: 

Algorithms, Comparisons, Challenges and Solutions.,” Int. J. Interact. Mob. Technol., 

vol. 16, no. 10, 2022.  

3. M. K. Jabbar and H. Trabelsi, “EtHgSC: Eigen Trick-Based Hypergraph Stable Clustering 

Algorithm in VANET,” J. Electr. Comput. Eng., vol. 2023, p. 6327247, 2023.   

 

Communications in international conferences 

1.  M. K. J. Alsabah, H. Trabelsi, and W. Jerbi, “Survey on Clustering in VANET Networks,” 

in 2021 18th International Multi-Conference on Systems, Signals & Devices (SSD), 

2021, pp. 493–502.  

2. M. K. Jabbar and H. Trabelsi. “A Review on Clustering in VANET: Algorithms, Phases, 

and Comparisons.” in 2022 19th International Multi-Conference on Systems, Signals & 

Devices (SSD), 2022, pp. 444–451. 

3. M. K. Jabbar and H. Trabelsi, “A Betweenness Centrality Based Clustering in VANETs,” 

in 2022 15th International Conference on Security of Information and Networks (SIN), 

2022, pp. 1–4. 

 

 

 



HyperGraph Based Stable Clustering in VANETs                                                Mays. K. J. Alsabah 

 

 

  

 

Table of Contents 

 

Abstract………..…………………………………………………………………………………………..i 

List of Figures…………………………………………………………………………………………....ii 

List of Tables………………………………………………….…………………………………………iv 

List of Notations ………………………...….…………………………………………………………...v 

Chapter 1: General Introduction…..….…………..………..…………….……………………………………1 

1.1 Overview of Vehicular Ad-hoc Network ........................................................................... 2 

1.1.1 VANET Characteristics...................................................................................................... 4 

1.1.2 Wireless Communication Modes in VANET..................................................................... 4 

1.1.3 Detected Short Range Communications (DSRC) .............................................................. 6 

1.1.4 VANET Applications ......................................................................................................... 8 

1.2 Thesis Motivations and Objectives ..................................................................................... 9 

1.3 Thesis Organisation ........................................................................................................... 11 

Chapter 2: State-of-the-Art of Clustering in VANET..……………….…..……….…….…...…..…14 

2.1 Introduction ........................................................................................................................ 15 

2.2 Clustering Algorithms History ......................................................................................... 17 

2.3 Clustering Process in VANETs ........................................................................................ 20 

2.3.1 Cluster Generation Phase ................................................................................................. 21 

2.3.1.1 Cluster Formation ...................................................................................................... 21 

2.3.1.2 CH Selection .............................................................................................................. 29 

2.3.2 Cluster Maintenance Phase .............................................................................................. 32 

 



HyperGraph Based Stable Clustering in VANETs                                                Mays. K. J. Alsabah 

 

 

2.4 Clustering Algorithms Comparison  ................................................................................ 33 

2.5 Performance Evaluation and Simulation Tools  ............................................................ 36 

2.5.1 Performance Evaluation Parameters ................................................................................ 36 

2.5.2 Simulation Tools .............................................................................................................. 37 

2.6 Literature Problems ........................................................................................................... 44 

2.7 Conclusion ........................................................................................................................... 45 

Chapter 3: HyperGraph Clustering Model (HGCM) in VANET………….…………..…..………...…47 

3.1 Introduction ........................................................................................................................ 48 

3.1.1 Clustering Methods based on Hypergraph ....................................................................... 48 

3.1.2 Why is VANET a Hypergraph Network? ........................................................................ 52 

3.1.3 Proposed Contributions .................................................................................................... 53 

3.2 Proposed Model .................................................................................................................. 54 

3.2.1 Formulation as hypergraph partitioning ........................................................................... 57 

3.2.2 HGCM Generation Model ................................................................................................ 57 

3.2.3 RSUs deployment ............................................................................................................. 61 

3.3 CH Selection and Cluster Maintenance for HGCM  ..................................................... 63 

3.3.1 CH Selection .................................................................................................................... 63 

3.3.2 HGCM Maintenance Phase .............................................................................................. 69 

3.3.3 Time Complexity of the HGCM Scheme ......................................................................... 71 

3.4 Simulation and Performance Evaluation  ....................................................................... 73 

3.4.1 Simulation Tools Used ..................................................................................................... 73 

3.4.2 Evaluation Metrics ........................................................................................................... 76 

3.4.3 Results and Discussion ..................................................................................................... 76 

3.4.3.1 Effect of Different Traffic Densities on HGCM Stability ......................................... 77 

3.4.3.2 State-of-the-Art Comparison ..................................................................................... 82 

 



HyperGraph Based Stable Clustering in VANETs                                                Mays. K. J. Alsabah 

 

 

3.4.3.3 Effect of Different Traffic Densities on Routing Performance ................................. 83 

3.5 Conclusion ........................................................................................................................... 85 

Chapter 4: EtHgSC: Eigen trick-based Hypergraph Stable Clustering in VANET.......…...88 

4.1 Introduction ........................................................................................................................ 89 

4.2 EtHgSC Proposed Model .................................................................................................. 90 

4.2.1 Cluster Generation............................................................................................................ 91 

4.2.2 CH Selection Measures .................................................................................................... 95 

4.2.3 Grey Relational Analysis Model ...................................................................................... 99 

    4.2.4 Time Complexity of EtHgSC Scheme………..……………………………………………………………………..102 

4.3 Simulation Results ............................................................................................................ 104 

4.3.1 Effect of Predicted next Vehicle’s Position on the Clustering Stability ........................ 105 

4.3.2 Effect of Eigen-trick Method on the Clustering Stability. ............................................. 107 

4.3.3 State-of-the-Art Comparison .......................................................................................... 110 

4.4 Conclusion ......................................................................................................................... 115 

Chapter 5: Conclusion and Future Works……………………….....................……………….…………118 

5.1 Conclusion ......................................................................................................................... 119 

5.2 Future Works .................................................................................................................... 121 

References ................................................................................................................................ 122 

Appendices……………………………………………………………..……….....................……………….…………133 

Appendix 1: The Map of Baghdad Loading and Directory Making………………...………133 

Appendix 2: Getting the TraCI and Vehicles’ Information ……….………………...………134 

Appendix 3: Obtaining the Adjacency Matrix for Maximum number of Vehicles….....…136 

Appendix 4: Cluster Head Selection Parameters………...……………………….…………….138 

Appendix 5: Grey Relational Analysis and PGRP Function ……….……….…..…...………143 

 



 

[i] 

Abstract      

 A vehicular ad hoc network (VANET) is a dynamic and constantly changing topology that 

requires stable clustering to prevent connection failure. This thesis brings original 

contributions, mainly to VANET clustering algorithms. This is our experiment with the 

hypergraph theory at different clustering schemes and cluster head (CH) selection parameters. 

In order to guarantee cluster stability, two clustering approaches based on the hypergraph 

theory are designed as a complete solution for VANET challenges. Each approach is 

bifurcated into two parts; cluster generation and CH selection. The first approach introduces a 

formulation of VANET through hypergraph spectral clustering. Hypergraph partitioning 

through the tensor trace maximisation (TTM) method is presented. Then, the Eigen-trick 

method is used to calculate the modified Laplacian value in TTM to improve the clustering in 

the second designed approach. The Eigen-trick considers the transformable connection 

between the vertex Laplacian and the hyperedge Laplacian, which can speed up the solution 

of eigenproblems without losing information. Also, it provides an approach for reducing the 

computational complexity of the clustering. 

In the two approaches, the CH is selected using different parameters, considering the criteria 

for maintaining a stable connection with the maximum number of neighbours. Also, two CH 

selection schemes are presented to select the most stable vehicle as a head. Strong 

connectivity and a stable link lifetime are obtained using these schemes.  

The proposed approaches demonstrate a considerable improvement in terms of stability and 

network performance compared with other techniques in the literature. 

The designed approaches are tested on a real map of Baghdad city with the help of an open 

street map (OSM) and a simulation of urban mobility (SUMO) to generate realistic traffic. 

SUMO supports the traffic control interface (TraCI) for MATLAB interfacing. The network is 

triggered from MATLAB through the TraCI API an data is recorded at every simulation 

second. 

Keywords: VANET, Clustering algorithm, Hypergraph, Tensor trace maximisation, 

Laplacian value, Cluster head, Stability, Relative speed, Neighbouring degree, Trust, Time to 

leave estimation, Long short term memory, Eigen-trick, Grey relational analysis. 
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1.1 Overview of Vehicular Ad-hoc Network   

The Intelligent Transportation System (ITS) that includes all types of communications between 

vehicles, is an important next-generation transportation system. ITS provides many facilities to 

the passengers, such as safety applications, assistant to the drivers, emergency warnings, etc. 

With the rapid development of automotive manufacturing, vehicles are becoming more and more 

intelligent and powerful. Vehicular Ad Hoc NETwork (VANET) is a self-organizing network 

formed by a collection of moving vehicles. VANET is a subset of Mobile Ad Hoc NETwork 

(MANET) [1]. MANET is a network without a fixed and self-configuring infrastructure of 

mobile nodes connected via wireless communication. When the mobile nodes in MANETs are 

replaced by vehicles and start to navigate fixed routes, such as roads, the network becomes a 

VANET. In contrast to MANET, VANET features a hybrid network design, sufficient energy, 

computational power, and nodes with increased mobility over limited routes [2]. 

Beginning in the early 1990s, people began to pay more and more attention to VANET 

technologies, and in recent years, it has become a significant concern. VANETs have shown 

promise in improving driving efficiency and traffic safety. Drivers can prevent unforeseen 

accidents at their blind spots, such as corners or other challenging road situations, by sharing 

pertinent traffic information with a group of close vehicles [3]. In emergency situations, vehicles 

like police cars and ambulances may receive a greater priority, allowing motorists nearby to be 

promptly alerted. Real-time traffic data can assist drivers in planning their routes and travel times 

to reduce congestion and increase traffic efficiency. A better-organized routing strategy helps 

reduce energy consumption and save resources. The primary benefit of VANET is to help 

vehicles communicate with one another and share information, which helps reduce traffic and 

improve road safety [4]. 

VANET uses vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications to 

increase driving efficiency and safety. Effective communication is made possible for usage in 

automobiles by dedicated short-range communications technology, which specifically refers to a 

suite of standards for Wireless Access in Vehicular Environments (WAVE) and supports both 

V2V and V2I communications [5]. 
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Figure 1.1.Vehicular Ad Hoc Network (VANET) [5]. 

VANET has two critical elements; Roadside Units (RSUs) and On-Board Units (OBUs). The 

RSUs are placed alongside the road, where they save all vehicle information and forward it to 

other OBUs. RSU is mounted along a road or pedestrian passageway. It may also be mounted on 

a vehicle or hand-carried, but it may only operate when the vehicle or hand-carried unit is 

stationary. The VANET network is shown in Figure 1.1 [5]. 

The RSUs can control the entire information transmission task in the vehicles or OBUs. On the 

other hand, OBUs are the devices placed in the dynamic vehicles and support information 

exchange among the vehicles and RSUs [1]. 

In the rest of this chapter, the characteristics and challenges of VANET, as well as VANET's 

communication modes and the associated technology, are introduced. The most important 

VANET applications are also presented. Furthermore, we identify the challenges in VANET and 

address the motivations and objectives of this thesis. At last, we present the contributions and 

organisation of this thesis. 



General Introduction                                                                                                    Mays. K. J. Alsabah 

4 | P a g e  
 

1.1.1 VANET Characteristics 

Compared with MANET, the specific characteristics and challenges of VANET have 

attracted researchers and industries from different fields to investigate VANET applications, 

technologies, protocols, and standards. VANET inherits similar features from MANET; 

however, it shows some unique characteristics, leading to some new challenges [6], [7].  

 Predictable vehicle mobility: Road topologies, traffic signals, traffic conditions, and road 

signs are all factors that limit the movement of vehicles. As a result, some ITS 

applications can benefit from a predictable vehicle trajectory. 

 Various vehicle mobility patterns: Varied mobility patterns are a feature of VANET. 

Cars, trucks, and motorcycles typically travel at different speeds. In the meantime, the 

speed limits vary depending on the traffic conditions. 

 Highly dynamic network topology: The network architecture frequently changes as a 

result of the rapid vehicular traffic, particularly on highways. When one vehicle passes 

another quickly due to a higher speed, the inter-vehicle connections may become 

unstable. As a result, these vehicles' information exchange is unreliable, which could 

further compromise traffic safety. Enhancing information transmission reliability in 

highly dynamic network topologies is a major area of research, particularly when sending 

emergency messages. 

 Unlimited network scale: The network scale of VANET may be extremely large, such as 

in scenarios involving extremely congested urban areas. The VANET's restricted 

transmission range can only provide a short-range vehicle communications without a 

central controller, which is insufficient to enable some VANET services. Instead of this, 

the hierarchical network architecture can address the issue of network scalability.  

1.1.2 Wireless Communication Modes in VANET.  

Increasing the efficiency of transportation and enhancing driver safety will be made possible by 

enabling information sharing between vehicles and infrastructures. The vehicle's sensors and 

other equipment, including the radar, Global Position System (GPS), and telemetry sensors, can 

be used to gather data. The RSUs may keep information from neighbouring vehicles or the 

database. These data can be transmitted to fulfill the needs of any additional nodes. The best 
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possible communication between vehicles, vehicles, and RSUs is ensured using VANET 

communication. There are three types of communication modes in the VANET [6], [8].  

A. V2V Communications  

The V2V communications model in VANET refers to vehicle-to-vehicle 

communications, where OBU-equipped vehicles are capable of direct radio 

communication within their radio ranges. Applications require data transmission between 

vehicles within the communication range. Due to the flexibility with which V2V 

communications can be implemented without the aid of infrastructures, the often 

exchanged data assists drivers in operating their vehicles safely and efficiently. Data 

transmission between vehicles is reliable and has a low latency with this type of 

communication [6]. 

But the majority of V2V applications rely on communicating with nearby vehicles via 

vehicular networks to exchange data. However, V2V communications can be exceedingly 

unreliable if vehicles are unable to send and receive messages (for instance, if OBUs are 

not equipped or malfunction). Additionally, users cannot access resources on external 

networks, such as the Internet, through V2V communications [8]. 

 

B. V2I Communications  

The term "V2I" stands for "vehicle-to-infrastructure communication"; it entails the 

installation of infrastructure along roads as well as a variety of applications from 

infrastructure to cars that might improve service quality. V2I communications offer 

trustworthy, secure, and mobile service applications via the network for cars. Vehicles 

communicate with RSUs using V2I in order to send and receive information or requests. 

The V2I has also named a Vehicle to RSU (V2R) if communication occurs between 

vehicles and an RSU. The RSUs placed along the roads can assist with traffic services for 

vehicles, such as providing details about the state of the roads or other locations, or 

providing information about the token collection and parking lot availability, etc [8]. 

However, achieving continuous connectivity for cars will require more power and end-to-

end latency in V2I than in V2V, and the installation of RSUs and other infrastructures is 

also an expensive strategy [6].  
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C. V2X Communications 

Vehicles and other terminals, such as RSUs, mobile devices, traffic signal towers, etc., 

can communicate with one another and with each other using V2X communications. 

V2V and V2I collaborate in V2X communications to ensure the quality of service of 

vehicular networks. For instance, pure V2V communications cannot maintain a stable 

connection for vehicles in low traffic density, thus the cooperation of V2I 

communications helps to avoid connection loss and enhance the link quality. Traditional 

V2V models' service areas can be expanded thanks to V2X communications, which also 

increase V2I's effectiveness and lower costs [8].  

Vehicles cannot be served via pure V2I communication when they are outside of an 

RSU's coverage area. But, with some additional assistance from V2V communications, 

the system is able to provide for vehicles outside of these specific ranges. Additionally, 

the transmission of data via V2V communications can assist in lowering the cost of 

rebroadcasting from RSUs to reach those cars that are too far away to obtain high-quality 

services. Consequently, the robustness and efficiency of data services can be further 

improved by the cooperative communication between V2V and V2I [6].  

The V2X process in this thesis consists of V2V communications, which are critical in 

exchanging data between the cluster heads and other cluster members. V2I connects the 

cluster head to the RSU. The RSU acts like a gateway inside a router, collecting 

connections from one or several vehicle clusters. 

1.1.3 Detected Short Range Communications (DSRC)  

Dedicated Short-Range Communications for Wireless Access in Vehicular Environments 

(DSRC/WAVE) have been created to facilitate vehicular communications throughout the 

development of ITS. Different spectrums and standards have been assigned by Europe, the  

United States, and Japan for vehicular communications [9]. 

The Federal Communications Commission (FCC) of the United States assigned 75 MHz 

(between 5.850 GHz and 5.925 GHz) of spectrum for DSRC in vehicular environments in 1999. 

A few years later, the 5.9GHz DSRC was created by the European Telecommunications 

Standards Institute (ETSI) to assist ITS. Japan has made efforts to encourage Electronic Toll 
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Collection (ETC) systems, which have reduced vehicle emissions and saved time and money. 

Table1.1 displays the characteristics of DSRC in these three regions [10]. 

Table 1.1 DSRC Features. 

Feature USA European Japan 

Radio Band 75MHz 20MHz 80MHz 

Radio Frequency 5.9GHz 5.8GHz 5.8GHz 

Data Rate 3-27 Mbps 350 Kbps 1-4 Mbps 

 

The IEEE 802.11p/1609 WAVE protocols, which are specifically created to satisfy the 

requirements of vehicular communications, serve as the foundation for DSRC. The 

communication in DSRC is described as being "Short Range" and occurs over distances of 

hundreds of meters (100m-1000m). Direct V2V and V2R communication can be supported by 

DSRC without the need for infrastructure. IEEE 802.11p takes into account the situation where 

nodes are moving quickly and operating in the DSRC frequency band. The connection between 

automobiles and RSUs in traffic scenarios only lasts for a brief time; Consequently, IEEE 

802.11p specifies a method of sending messages between nodes without having to wait for the 

process to join a Basic Service Set (BSS). This reduction in latency may cause the data to be sent 

through other available channels [11].  

 

Figure 1.2 DSRC Channels [11]. 

According to IEEE 802.11p, the 75 MHZ spectrum is split into seven channels, each of which 

has a 10 MHz bandwidth (Figure 1.2). One of these seven channels (channel 178) is referred to 

as the control channel (CCH) and it is only used for urgent safety messages. The other two 

channels are Service Channels (SCH), one on each side of CCH; they only convey application 
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and service data. Sometimes, two nearby SCH might combine to form a single 20 MHZ channel. 

The final two channels on each end are set aside for special delivery when necessary [11]. 

1.1.4 VANET Applications 

Infrastructures alongside roads serve as access points or cache points for information about 

services. Various real-world criteria could be satisfied by using the interaction between cars or 

between vehicles and RSUs. Three types of VANET applications can be distinguished, including 

road safety, traffic efficiency, and entertainment applications [12]. 

A. Road Safety 

In order to prevent some potential problems, vehicles communicate with one another, 

especially when they are at intersections or on a road with a lot of traffic. Vehicles can be 

alerted when a vehicle in their blind spot is heading toward them, and they can also be 

startled when a sudden break occurs in front of them even when it is still a few vehicles 

away. When an emergency occurs, such as ambulances or fire trucks passing by, vehicles 

could be warned in advance to move aside. Cooperative message transfer, real-time 

information assistance, and traffic control notification are the core components of traffic 

safety applications. 

 

B. Traffic efficiency  

The effectiveness of the transportation system as a whole is the main emphasis of these 

applications. As an illustration, you may tell distant vehicles to switch to a road with less 

traffic density in order to prevent traffic congestion. Typically, this type of application 

needs a wide affected range. The transmission latency and accuracy are less strict when 

compared to safety applications. 

 

C.  Entertainment applications 

Various communication technologies are used to support these applications. These 

applications offer information entertainment and services such as information sharing, 

internet access, streaming audio, video, etc., to drivers. 
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1.2 Thesis Motivations and Objectives 

Among the ITS applications mentioned above, the most urgent and challenging one is the safety-

related application. For this kind of application, information dissemination usually requires low 

latency, high accuracy, and high reliability. At the same time, VANET has a scalability problem 

that cannot be solved by flat network architecture without a central controller. Thus, researchers 

have proposed a hierarchical network architecture to solve this problem. In such hierarchical 

network, vehicles are virtually organised into different groups called clusters. The objective of a 

clustering algorithm is to partition a network into some subnetworks, each of which has some 

similar attributes according to an appropriate metric. Designing stable clustering algorithms for 

vehicular networks is the major purpose of this thesis. 

Communication overhead has the issue of scalability and stability in a dynamic environment. 

VANET is a dynamic and constantly changing topology, so it requires stable clustering to 

prevent connection failure.  

 Our first objective in this thesis is to design clustering approaches for VANET as a complete 

solution to this challenge in order to guarantee cluster stability using hypergraph theory.  

The formation of stable clusters is a big challenge in designing any clustering algorithm in 

VANET due to swift changes in vehicle communication links. 

The hypergraph approach is used to comprehend this problem, so the formulation of VANET 

through the hypergraph is introduced in our work. Then, based on the hypergraph spectral 

clustering through the tensor trace maximisation method, an optimal number of clusters is 

formed. 

The work on the real scenario is mostly limited to the highway; the urban scenario analysis is 

very limited and few. Designing a clustering algorithm for an urban environment is more 

complicated than designing it for a highway, due to the large number of intersections and the 

varied speed of vehicles as a result of congestion. 

 Our clustering approaches are designed for the urban scenario and tested on the real map of 

Baghdad's region.  
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The cluster head maintains the communication between the cluster vehicles and RSU. The longer 

stability of the cluster head is required. The stability of the cluster head will be higher if it is in 

communication link with the neighbouring vehicles for a longer time. Sustaining a cluster head 

for a long period is difficult. 

So, in our work, some parameters to select the most stable cluster head are introduced. These 

parameters are: 

 Vehicle’s Relative speed: How close a vehicle’s speed to its neighbour’s is determined 

using this parameter. 

 Neighbouring degree: it is the total number of neighbouring vehicles 

 The eccentricity which is calculated by an ever-evolving hypergraph and eliminates the 

need for re-clustering for the dynamic traffic density. 

  The trust score is inspired by the deep learning-trained spectrum sensing approach. The 

trust values for the primary users are especially to be evaluated using an adaptive 

spectrum sensing. Long short-term memory (LSTM), a deep recurrent learning network, 

is trained for the probability of detection with various signal and noise conditions. 

 The vehicle’s time to leave estimation is calculated with the help of the predicted vehicle 

position using the Predictive directional greedy routing protocol.  

To increase the clustering stability, two cluster head selection schemes are introduced in this 

thesis. By using these schemes, strong connectivity and a stable link lifetime are obtained. These 

two schemes are: 

 The scheme of a cumulative multimetric is first presented in Chapter 3.  

 A relational analysis is developed using a grey relational analysis model between four 

cluster head selection parameters instead of knowledge based weightage. This scheme is 

presented in Chapter 4. 

In summary, this work is our experiment with the use of hypergraph theory at different clustering 

approaches and cluster head selection parameters. 
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1.3 Thesis Organisation  

This thesis brings original contributions, mainly to VANET clustering algorithms. In this thesis, 

a formulation of VANET through a hypergraph is introduced. It is our experiment with the 

hypergraph theory. The hypergraph-based spectral clustering method is applied in different 

clustering approaches. Also, two cluster head selection schemes are presented to increase the 

clustering stability. In this thesis, we first provide an overview of the existing clustering 

algorithms in the literature using various terms. Secondly, to obtain stable clustering, we propose 

an entirely dynamic approach to the clustering formation and maintenance of a VANET structure 

in an urban scenario. This approach uses a hypergraph spectral clustering model for cluster 

formation, and the cluster head stability is governed by a cumulative multimetric factor. Thirdly, 

we try to increase the clustering stability by improving the hypergraph algorithm using the 

Eigen-trick method, which can speed up the solution of eigenproblems without losing 

information. The cluster head stability is increased by using a new scheme for selecting the 

stable cluster head with the help of the grey relational analytical model. The organisation of this 

thesis is listed in what follows: 

 Chapter 1: General Introduction. 

This chapter introduces the context and provides a general overview of VANET. VANET 

characteristics and challenges, communication modes, technologies, and applications are 

presented. Furthermore, we address the motivations and the desired objectives of this thesis. 

Finally, we introduce the organisation of this thesis. 

 Chapter 2: State-of-the-Art of Clustering in VANET. 

In this chapter, we give an overview of the existing clustering algorithms in VANETs. A 

complete survey on clustering in VANETs is provided based on the clustering process. The 

clustering process in most algorithms is explored in the aspects of cluster head selection, 

cluster construction, and cluster maintenance. Then, the existing algorithms are compared in 

terms of transmission range, vehicle density, vehicle velocity, hop count, and traffic scenario. 

In addition, a comprehensive analysis of clustering algorithm performance evaluation 

methods is presented, followed by performance metrics, goals, and simulation tools for each 
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clustering algorithm in the literature. Finally, some of the most important issues in the 

literature are summarised. 

 Chapter 3: HyperGraph Clustering Model (HGCM) in VANET. 

In this chapter, a newly developed vehicular-hypergraph-based spectral clustering model is 

introduced. It is called the HyperGraph Clustering Model (HGCM), which aims to improve 

the cluster's stability. Clusters are formed using the hypergraph through the tensor trace 

maximisation and the construction of the hypergraph is designed using the distance proximity 

amongst the vehicles in the network. The network’s performance, especially in an urban 

scene, can be improved by installing auxiliary facilities, such as RSUs. Here, an evolving 

graph structure of the traffic is conceived using betweenness centrality. The cluster head 

stability is governed by a cumulative multimetric factor inclusive of relative speed, 

eccentricity, neighbourhood, and spectrum sensing based on cooperative trust. Trust 

calculation is performed using deep learning-trained spectrum sensing as a model. The 

scheme of a cumulative multimetric is introduced through which strong connectivity and 

stable link lifetime are maintained. The proposed HGCM is tested for various vehicle 

densities in a real area in Iraq’s capital, Baghdad. Compared with individual measures and 

other techniques in the literature, our cumulative approach significantly improves the 

clustering stability. The proposed approach also improves the network performance in terms 

of packet delay and throughput.  

 Chapter 4: EtHgSC: Eigen trick-based Hypergraph Stable Clustering in VANET. 

This chapter is dedicated to improve the hypergraph-based spectral clustering algorithm 

using the Eigen-trick method. To improve clustering, the Eigen-trick is used to calculate the 

modified Laplacian value in the tensor trace maximisation. The Eigen-trick improves the 

clustering efficiency by utilising higher-order information in eigenvalues. It considers the 

transformable connection between the vertex Laplacian and the hyperedge Laplacian, which 

can speed up the solution of eigenproblems without losing information.  

We introduce a new scheme using the improving hypergraph algorithm for cluster 

generation. The proposed scheme is named Eigen trick-based Hypergraph Stable Clustering 

(EtHgSC). The slow dragging and high-speed vehicle management, along with the direction 
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change due to junctions and hybrid velocities, have been taken into consideration in this 

approach. So, for cluster head selection; in addition to relative speed, neighbouring degree, 

and eccentricity, the vehicle’s time to leave is introduced by using estimating the next 

vehicle’s position. The predicted vehicle direction at the next instant is calculated with the 

help of the predicted vehicle position by the predictive directional greedy routing protocol to 

get the necessary estimated time to leave. A relational analysis is developed using grey 

relational analysis between four cluster head selection parameters instead of knowledge-

based weightage.  

There is a significant improvement in terms of stability using the EtHgSC model. Our 

proposed scheme has the highest stability in a comparison with the state-of-the-art 

techniques, which are the most widely used (High citations) in the literature. 

 Chapter 5: Conclusion and Future Works. 

This chapter concludes this thesis and points out some limitations of the work. Meanwhile, 

limitations of the thesis will be further considered for future study and research. 
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2.1 Introduction  

One of the most important and investigated ITS applications is the safety-related application. To 

support these services, information should typically be sent with high accuracy and minimal 

latency. However, VANETs have a highly dynamic topology, with a high relative speed of 

vehicles and frequent discontinuities in the networks that cause scalability and unstable 

connection problems. Also, a single vehicle cannot keep global information for a vast and 

dynamic network like VANETs due to its limited transmission range. These shortcomings lead to 

topology management in VANETs, that can be done through clustering [13]. 

One of the most effective unsupervised methods for grouping information is clustering. It is a 

common VANET technology that offers an appealing approach for simplifying and optimising 

network functions and services. When compared to the traditional flat structure Figure 2.1 (a), it 

has dramatically improved performance in a variety of applications. The clustering structure for 

VANET has more benefits than the flat structure. These benefits include; reducing the overhead, 

reducing latency, increasing network stability, enhancing the network’s scalability and 

reliability, reducing broadcast storm problems, and mitigating redundant data transmission.  

Clustering is a technique for organising network nodes into small groupings called clusters. 

Typically, vehicles in close proximity are grouped together in a cluster based on various key 

parameters and metrics. The vehicles present in the cluster are known as [4],[5]:  

1. Cluster Head (CH): This is the node that is the coordinator or head of the cluster. The CH is 

selected according to different criteria, and its main task is to allow cluster members to 

communicate and share information with other members and CHs. Each CH in the cluster is 

responsible for communicating with its members, the RSU, and the CHs of other clusters. 

2. Cluster Member (CM): The remaining nodes in the cluster are the CMs. These nodes 

exchange information by broadcasting messages to each other. 

3. Gateway Node (GW): This node helps to communicate with RSU; it doesn’t need to be 

present in every cluster. 

Figure 2.1 (b) illustrates the VANET's cluster-based communication structure. A CH is chosen 

by defining the network's parameters, and the remaining vehicles are treated as CMs. Internal 
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cluster communication is handled entirely by the CH. There are two specific routing that divide a 

cluster’s internal communication; intra-cluster communication and inter-cluster communication. 

The formation of a cluster decreases the performance of high load on the VANET nodes [5]. The 

communication efficiency of VANETs can be enhanced through vehicular node clustering if the 

clusters are reliable and possess longevity. So, the cluster stability is important for the VANET's 

reliability and scalability, as it guarantees minimal intra- and inter-cluster communication, 

lowering the overhead associated with these issues [5]. 

 An efficient clustering technique minimises the overhead of reclustering and facilitates network 

management. To implement a robust clustering algorithm, there are problems that need to be 

solved: Clustering methods need to be designed, and metric has to be used to select the CH [14]. 

 
(a)  

 

(b) 
Figure 2.1. VANET (a) Flat Structure and (b) Clustering Structure. 

To achieve the best information of communication in VANET, the most recent clustering 

algorithms are presented. We also concentrate on VANET's intelligent clustering algorithms. 

This leads us to explore different clustering strategies. 

The following is a list of this chapter's main contributions: 
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 An overview of the development of clustering algorithms in VANETs from 2008 to 2022, 

which have been observed and studied, is provided. Also, most of these algorithms have 

never been summarised in previous research. 

 The existing clustering techniques are summarised and classified in terms of clustering 

procedure: Cluster formation, CH selection, and cluster maintenance. 

 The clustering techniques in the literature are compared in terms of density, mobility, 

traffic scenario (environment), topology, and transmission range.  

 A comprehensive analysis of the most common parameters used for evaluating the 

performance of clustering algorithms is introduced, including cluster performance 

parameters and network performance parameters. Also, simulation tools for each 

clustering algorithm are presented.  

 Some of the most important issues in the literature are summarised, and then our 

proposed solution is introduced, which will be presented in detail in the next chapter.  

2.2 Clustering Algorithms History 

In the early 1990s, the clustering techniques for VANETs began to be developed and were 

expanded after 2005 [13]. 

Researchers discovered that prior clustering algorithms in MANETs were no longer appropriate 

for VANETs due to their predictable mobility and specified route topology. Additional control 

overheads may be imposed due to the time it takes to complete the clustering phases. As a result, 

a good clustering method should construct a small number of clusters and dynamically maintain 

the cluster structure without creating significant network overhead. Some MANET clustering 

methods were developed to address the unique requirements of vehicular communications. 

Furthermore, most of the clustering algorithms were derived from the previous MANET 

clustering algorithms, including the Mobility Based Metric for Clustering (MOBIC) in [15], 

Weighted Clustering Algorithm (WCA) in [16], and Distributed and Mobility Adaptive 

Clustering (DMAC) in [17]. Several clustering techniques for VANETs have been proposed, 

particularly after 2010 as a result of the expansion and development of the VANET and also to 

meet the need of increasing the clustering stability and solving some problems. In Table 2.1, 

some VANET clustering algorithms are highlighted, which have been presented from 2008 to 
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2022. Also, the number of citations for each algorithm is highlighted. We note that the Hybrid 

Vehicular Multi-hop algorithm for Stable Clustering (VMaSC-LTE) has the highest citations, 

and the Passive Multi-hop Clustering algorithm (PMC) has the highest mean citations.  

Table 2.1 Various Clustering algorithms with their number of Citations. 

Ref Year Algorithm Abbreviation Citation Mean  

[18] 2008 Position-based Prioritized Clustering PPC 179 12.8 

[19] 2009 Robust Mobility Adaptive Clustering RMAC 77 5.9 

[20] 2009 Affinity Propagation APROVE 209 16 

[21] 2009 Density Based Clustering DBC 80 6.15 

[22] 2010 Aggregate Local Mobility ALM 133 11.1 

[23] 2010 Cluster-Based Directional Routing Protocol CBDRP 74 6.2 

[24] 2011 Vehicular clustering based on the Weighted 

Clustering Algorithm 

VWCA 158 14.3 

[25] 2011 Adaptive Service Provider Infrastructure ASPIRE 14 1.3 

[26] 2011 Zhang et al. [26] - 141 12.8 

[27] 2012 Spring-Clustering Sp-Cl 58 5.8 

[28] 2012 Stability-Based Clustering Algorithm SBCA 63 6.3 

[29] 2012 Threshold Based algorithm TB 207 20.7 

[30] 2012 Fuzzy Logic Based clustering Algorithm FLBA 82 8.2 

[31] 2012 Mobility-Aware Clustering Algorithm based on 

Destination positions 

AMACAD 78 7.8 

[32] 2012 Trust dependent Ant Colony Routing TACR 54 5.4 

[33] 2013 Agent Learning–based Algorithm ALCA 87 9.6 

[34] 2013 Vehicular Multi-hop algorithm for Stable Clustering VMaSC 98 10.9 

[35] 2014 Arkian et al. [35] - 52 6.5 

[36] 2015 Distributed Multi-hop Clustering based on 

Neighbourhood Follow 

DMCNF 103 14.7 

[37] 2015 Adaptive Weighted Clustering Protocol AWCP 61 8.7 

[38] 2015 Aggregate Relative Velocity ARV 35 5 

[39] 2015 Hybrid Vehicular Multi-hop algorithm for Stable 

Clustering 

VMaSC-LTE 365 52.1 

[40] 2016 Mobility-aware and Single-hop Clustering scheme MOSIC 11 1.8 
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[41] 2016 New Clustering Algorithm Based on Agent 

Technology 

NCABAT 11 1.8 

[42] 2016 Clustering-Based VANET Routing algorithm Protocol CBVRP 36 6 

[43] 2017 A Mobility-based Scheme for Dynamic Clustering in 

VANETs 

MoDyC 126 25.2 

[44] 2017 K-Mean and Floyd-Warshall algorithms KMFW 21 4.2 

[45] 2017 Cluster-Based Life-Time Routing CBLTR 88 17.6 

[46] 2017 Stable Clustering algorithm for vehicular ad hoc 

networks 

SCalE 23 4.6 

[47] 2018 Passive Multi-hop Clustering Algorithm PMC 221 55.25 

[48] 2018 Link Reliability-based Clustering Algorithm LRCA 37 9.25 

[49] 2018 Unified Framework of Clustering approach UFC 73 18.25 

[50] 2018 Enhanced Control Overhead Reduction Algorithm ECORA 3 0.75 

[51] 2018 Normalized Multi-Dimensional Parameter based 

Affinity Propagation Clustering 

NMDP-APC 7 1.75 

[52] 2019 Saleem et al. [52] - 17 5.7 

[53] 2019 Double-Head Clustering DHC 46 15.3 

[54] 2019 Enhanced Weight-based Clustering Algorithm EWCA 30 10 

[55] 2019 Hybrid Clustering Algorithm based on Roadside HCAR 21 7 

[56] 2019 Center-Based Clustering algorithm CBSC 47 15.6 

[57] 2019 Mobility Based Clustering Algorithm MBCA 6 2 

[58] 2019 Cluster-based VANET oriented Evolving Graph CVoEG 35 11.6 

[59] 2019 Fuzzy-based Cluster Management Scheme FCMS 31 10.3 

[60] 2019 Probabilistic- Direction-Aware Cooperative Collision 

Avoidance 

P-DACCA 23 7.6 

[61] 2019 Chain-Branch-Leaf  CBL 14 4.6 

[62] 2019 Abbas et al. [62] - 9 3 

[63] 2019 Moore et al. [63] - 4 1.3 

[64] 2020 Grasshoppers’ Optimization-based node clustering 

Algorithm 

GOA 22 11 

[65] 2020 Collaborative Clustering Approach for the 

Internet of Vehicles 

CCA-IoV 4 2 

[66] 2020 Adaptive Clustering with Optimal Stability ACOS 0 0 
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[67] 2020 Diverted Path Approach DPA 9 4.5 

[68] 2021 Junction-based Clustering for VANET JCV 4 4 

[69] 2021 Maan et al. [69] - 5 5 

[70] 2021 Khan et al. [70] - 4 4 

[71] 2021 K-Means clustering method, a new routing protocol KMRP 9 9 

[72] 2022 Region-based Collaborative Management Scheme RCMS 2 2 

 

2.3 Clustering Process in VANETs 

The cluster establishment in VANET communication process is the most important part. There 

are two phases to complete this process: 

• First phase- (Cluster Generation): which has two major components; the cluster 

formation process and the CH selection process; during this phase, nodes send advertisement 

messages to pick the primary CH and CMs, and subsequently regular data packets are 

transmitted between them. In order to create a stable cluster, there may be a few techniques 

added between the advertisement message transmission and CH selection. 

• Second phase- (Cluster Maintenance): Stable cluster merging, selection of secondary CH, 

re-clustering, and cluster splitting are some of the maintenance methods. 

The cluster formation and maintenance work together throughout the whole operation period. 

The formation phase provides a cluster based on the current and predictable network topology, 

while the maintenance phase reduces the impact caused by unpredictable network changes. As 

mentioned previously, the clustering formation method and the metrics used for selecting the CH 

are the two major issues that need to be considered for designing an efficient clustering 

algorithm [14]. 

Few researchers in the literature have discussed these phases separately. This section provides an 

overview of the algorithms and criteria used in each clustering step, including cluster formation, 

CH selection, and cluster maintenance. 
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2.3.1 Cluster Generation Phase 

This phase goes through two processes to complete the generation of clusters; Cluster formation 

process and CH selection process. To complete the clustering generation phase, some algorithms 

form the clusters and then select the CH and others vice versa. 

2.3.1.1 Cluster Formation 

Cluster formation can help reduce the network load and increase overall efficiency. Each cluster 

has two or more members and selects its CH, which is responsible for faster communication with 

a minimum delay. Cluster formation in VANET has various types and categories: in terms of 

topology: single-hop vs. multi-hop, in terms of the environment: highway vs. urban, in terms of 

models: center-based vs. distributed-based, in terms of density: dense vs. sparse, in terms of 

speed: high speed vs. slow speed.  Information used for VANET clustering can be topology 

information and mobility information such as speed and acceleration. This section classifies the 

clustering algorithms on the basis of topology Figure 2.2. That means a cluster structure in 

VANETs can be modeled according to the hop distance that separates the CH and its members, 

transmission range, and cluster radius.   

 

                              (a)                                                                              (b) 

Figure 2.2. Cluster Topology a) Single hop and b) Multi-hop. 
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 a. Single-hop Clustering Algorithms 

It is the algorithm that creates clusters with a single-hop distance between each node and its CH. 

That means every node connects directly with the CH [13]. Many clustering algorithms form 

directly single-hop clusters based on the vehicle transmission range or the limited cluster radius. 

Some of the single-hop clustering algorithms are: 

In [19], the authors presented RMAC algorithm, which identified a one-hop neighbour and 

selected a CH using the relative node mobility metrics of speed, location and travel direction. An 

evolving structure was created via neighbourhood analysis using the node precedence algorithm. 

This approach facilitates geographic routing by producing accurate neighbour information. 

However, frequent change of CH is the issue, which was not dealt with in this algorithm. 

With the same mobility concept, another single-hop schemes were presented in [20] and [43]. 

APROVE algorithm was proposed using the affinity propagation technique in a distributed 

manner [20]. The authors claimed the existence of clusters with high stability.  

One of the major issues in the VANET is the security because of its impact on the performance 

of the network, it is done in VWCA in [24], and ALCA in [33]. VWCA algorithm also improves 

the connectivity, and stability performance; it is a single-hop clustering algorithm. The 

connectivity can be increased using the adaptive transmission range algorithm (AART) which is 

based on detected short-range communication standards. The AART helps to extend the 

transmission range dynamically from 100 m to 1000 m based on the vehicles’ density. 

Koulakezian in [25] designed ASPIRE architecture by using the concept of vehicular mobility in 

a highway scenario. The author allowed vehicles to connect to the network through regular 

mobile IP nodes, thereby increasing the connectivity and decreasing the overhead by caching in 

clusters.  

The stability of the CH in VANET was enhanced by designing the SBCA algorithm in [28]. This 

algorithm provides a more stable structure according to vehicle mobility and the number of 

neighbours. This algorithm achieves the extension of the CH lifetime. The cluster formation 

procedure does not take the vehicle’s direction into account, which has an impact on the VANET 

system’s performance. 
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The fuzzy logic with software-defined networking to improve the cluster stability was used in 

[30] and [69], but Fuzzy logic usage imposes a knowledge constraint to define the optimal rules. 

The authors in [30] suggested a distributed and dynamic CH selection criterion in order to 

dynamically organise the network into clusters. The FLBA method contains a learning 

mechanism that predicts the future positions and speeds of all CMs using a fuzzy logic inference 

system. 

AMACAD is a single-hop clustering algorithm for VANETs; it was proposed in [31]. This 

algorithm takes into account the destination of the vehicles to arrange the clusters and 

implements an efficient message mechanism to respond in real-time and avoid global re-

clustering.  

In [40], the authors proposed the MOSIC algorithm. Gauss Markov mobility (GMM) model is 

used by this proposed for mobility prediction that makes a vehicle able to prognosticate its 

mobility relative to its neighbours. 

NCABAT was introduced in [41], it is a single-hop clustering algorithm. The objective of this 

algorithm is to describe the agent properties of vehicles with the purpose of improving traditional 

schemes in terms of performance. 

Some algorithms, like  KMFW in [44] and KMRP in [71], used a K-mean method and integrated 

it with other algorithms to form stable clusters. The K-mean method is one of the simplest 

unsupervised clustering methods. 

LRCA algorithm was proposed in [48] to grant reliable and efficient data transmission in urban 

VANET. LLT-based neighbour sampling scheme is used to select a group of vehicles with stable 

neighbour vehicles. In this proposed, the routing approach is prepared to support infotainment 

services in VANET, which are not strict in delay constraints. Better clustering stability in terms 

of long CH duration, long CM duration, and low rate of CH change was acquired using LRCA. 

The authors in [53] presented a robust DHC method for VANET. It is a single-hop clustering 

algorithm that aims to increase cluster stability and minimise the number of clusters in the 

network under different scenarios and conditions. 
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EWCA was proposed in [54], it is a single-hop clustering algorithm. In this algorithm, the 

vehicles with the same road ID and within the transmission range of their neighbours are suitable 

for the cluster formation process. In an emergency message transmission case, this technique 

reduces the formation of unstable clusters and enhances the clustering stability. The simulation 

results have proven that the cluster stability and overhead latency reduction are superior. 

HCAR was proposed in [55], it is a single-hop clustering method. The RSUs were used to design 

it for the Internet of Vehicles (IoV). The HCAR algorithm is centralised in the distributed RSUs. 

After the RSUs have been managed, the clusters are formed using a graph theory-based 

approach. The weight mechanism is used to choose secondary CH to address the problem of CH 

unavailability. This proposed improves the stability of CH. 

The authors in [56] proposed the CBSC algorithm to help self-organized VANETs form stable 

clusters and decrease the status change frequency of vehicles on highways. Also, a new CH 

selection algorithm was presented to minimise the impact of vehicle motion differences. In this 

scheme, two metrics are introduced to enhance VANET’s security. The results showed that the 

proposed technique has a low packet loss rate and high stability. 

The authors in [61] introduced the Multi-Point Relay (MPR) and CBL algorithm. MPR aids in 

reducing redundant transmission throughout the network. In CBL algorithm, the vehicles that 

move in the same direction and with lower speed are suitable for building a backbone (chain). 

This algorithm increases the CH lifetime and creates a stable cluster.  

In [65], the authors presented a new collaborative clustering algorithm CCA-IoV based on node 

score, in which the CH is chosen from a vehicle with a high node score. The distance, degree of a 

node, average relative speed, link stability, and average relative acceleration are the parameters 

used to determine the node score. To improve cluster stability, they also presented a vice CH; 

however, the mechanism by which a vice CH increases cluster stability is not adequately 

understood. 

In [68], the authors proposed a robust and dynamic mobility-based clustering scheme called 

JCV. It is a single-hop clustering algorithm and clusters were generated by considering the 

moving direction of a vehicle at the junctions, vehicles’ density, and transmission range. The CH 
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was selected by relative position and time spent on the road. This technique provided high 

stability, preventing clusters from breaking at the junction frequently. 

Single-hop clustering algorithms provide more reliable intra-cluster communication and highly 

effective coordination to CHs. The coverage area of this type of cluster is small, which leads to 

high maintenance overhead and a large number of clusters.  

Also, in single-hop clustering algorithms, when the density of vehicles is low, the vehicle may 

not find any member and stay single, so it cannot form a cluster. This case should be avoided 

because the cluster performance will be decreased. To avoid this problem, the minimum number 

of vehicles can be limited in a cluster. We can summarise that the single-hop algorithms provide 

good cluster stability and low latency, but clustering coverage requires further improvement.  

b. Multi-hop Clustering algorithms 

     Clusters are generated with multi-hop distance, where every node is at a distance of at most 

multi-hop from its CH. Some multi-hop clustering algorithms are presented in this section. 

In [18], the authors proposed a multi-hop clustering technique known as PPC in which cluster 

structure is determined by the geographic location information and priorities assigned to 

vehicles. Each node broadcasts information related to itself and its neighbours. In this approach, 

the CH election process is similar to the computation of minimum dominating sets used in graph 

theory. A node with the highest priority is selected as a CH.  

DBC was introduced in [21], it is a multi-hop clustering model using YATES algorithm to 

achieve stability in clusters. In this proposed the cluster formation is based on a complex 

clustering metric that takes into account the density of the connection graph, link quality, and 

traffic conditions. 

The ALM algorithm was proposed in [22]. This algorithm followed a similar cluster formation 

process and CH selection. Each vehicle calculates its overall mobility variance neighbours. 

Lower variance equates to less mobility and greater stability. As a result, a car with less variance 

than its neighbours is a good candidate for a CH. Also, the proposed algorithm avoids clusters 

from merging frequently in order to improve cluster stability.  
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Some algorithms were introduced to solve the problem of fast data transmission and link 

connectivity, like the CBDRP in [23]. It is a multi-hop clustering algorithm, and the clusters are 

formed based on moving direction and radio communication. This approach reduces latency and 

increases packet delivery ratio and link stability. 

The same ideology of mobility in [25]  was reintroduced using the concept of multi-hop, and a 

new clustering scheme based on multi-hop was presented by Zhang et al. [26].  

In [27], the authors proposed a distributed clustering algorithm that forms stable clusters based 

on force-directed algorithms; it is named as Sp-Cl scheme. Every node applies to its neighbours a 

force according to their distance and their velocities. Vehicles that move in the same direction or 

toward each other apply positive forces while vehicles moving away apply negative forces. This 

work also proposed mobility metric based on forces applied between nodes according to their 

current and future position and their relative mobility. 

A multi-hop clustering approach was also presented in [29] called TB with the goal of 

maximising the stability of the network topology and decreasing network dynamics. The speed 

difference among vehicles as well as the position and the direction were taken into account in 

this proposed during the cluster formation process. This algorithm increased the stability of the 

network by increasing CH lifetime and minimising vehicle transitions between clusters. 

Some algorithms like TACR in [32] improve the routing overhead by using a new technique to 

select the CH by taking into consideration the trust value and the updated position of vehicles. 

VMaSC was proposed in [34], this algorithm is used to construct stable multi-hop clusters with a 

minimum number of CHs in VANET. The CH is selected based on the node with the least 

mobility via multi-hops, which is determined as a function of the speed differential between 

neighbouring nodes. Also, the VMaSC was improved in [39] by integrating IEEE 802.11p-based 

multi-hop clustering and the Long-Term Evolution (LTE). 

The speed difference between neighbouring nodes was taken into account to obtain a stable 

clustering structure [35]. 
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In [36], DMCNF was proposed to solve the network weaknesses that occur as a result of a 

dynamic topology. It allows cars to choose their targets in a distributed manner among one-hop 

neighbours on a regular basis. The selection of CH is determined by the vehicle’s relation to its 

neighbours. The cluster’s stability is improved by this algorithm. 

AWCP was introduced by taking into account the speed information, direction, position, and 

highway ID to select the most stable vehicles among current vehicles to operate as CHs [37]. 

This algorithm uses highway ID information to maximise cluster structure stability. This 

technique improves cluster lifetime and minimises communication overhead. 

In [42], for desert and rugged situations, a VANET-based clustering routing protocol was 

introduced. The source and destination vehicles work to keep the stability of cluster architecture. 

The designed algorithm’s tasks are CH selection, cluster structure formation, and routing 

protocols. 

The lack in clustering algorithms performance in VANET in terms of stability and reliability was 

solved by the PMC algorithm [47], which is a multi-hop algorithm. Clustering is presented in 

this approach based on the priority neighbour following strategy. This strategy can improve the 

stability of clusters and reduce the cost of clustering effectively. 

One of the major issues in VANET is cooperative collision avoidance (CCA) which has an 

impact on cluster stability. In various two directions of real traffic scenarios, a probabilistic 

direction aware (PDA) algorithm was proposed for dominant CCA [60]. Cluster formation is 

handled using a modified K-medoids method that integrates the Hamming distance metric for 

direct knowledge. The distance and speed of nodes are used to calculate a collision’s probability 

between the vehicles. The benign factor is used to determine the vehicles’ optimal safe speed, 

which is compared to the threshold range and delivers a collision warning. The communication 

overhead and collision latency are decreased. 

Grasshopper optimisation tunes the network parameters for enhanced stability [64]. But, the use 

of an optimisation algorithm in VANET is not feasible due to the frequently changing topology. 

Other algorithms proposed to increase the vehicular communication reliability [51],[67]. 
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Multi-hop clustering algorithms can reduce the number of clusters, expand the cluster coverage 

area, and enhance cluster stability. We can summarise that the multi-hop algorithms provide high 

clustering coverage, and good cluster stability, especially with regard to the number of CMs re-

affiliations, CH changes, and cluster lifetime. However, multi-hop cluster formation is more 

complex, which will take a long cluster formation time, and this may cause a delay in 

transmitting the information. In addition, if the connection is multi-hop, then the data loss may 

be high as the carrying vehicle may change its direction or speed, also, the cluster overhead 

requires more improvement. 

 Also, according to some simulation results, the cluster performance degrades when the number 

of hops is more than three [34]. This means when the hop count increases, the cluster 

performance will decrease. 

The authors in [38], [45], [46], [50], [52], [57], [58], [59], [62], [63], [66], and [70] didn’t 

mention whether the connection between their CHs and members is single-hop or multi-hops, 

each of these algorithms is formed according to different criteria and presented to achieve a 

specific goal. 

In [38], a hybrid backbone-based clustering algorithm for VANETs was proposed. The concept 

of the number of links and vehicular mobility is used for cluster formation and CH selection. 

During cluster formation, nodes with a relatively higher degree of connectivity initially form a 

backbone that is designated as leadership. The leadership then participates in CH election and 

efficient cluster re-organization using an aggregate relative velocity of vehicles in the leadership. 

The authors in [45] presented CBLTR algorithm to enhance the overall clustering protocol 

performance. This algorithm increases the throughput and the route stability. 

Other algorithms, like the ECORA in [50] proposed aimed to reduce the routing overhead. For 

CH selection, this algorithm used CBLTR protocol. ECORA reduces the control overhead by 

limiting frequent CH advertising on the highway. 

In [57], the MBCA was used to solve the problem of multimedia broadcasting content in a 

hybrid VANET topology. Cluster formation and CH selection are based on mobility 
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measurements, which are utilised to determine the vehicles’ relative speeds. The cluster’s 

stability is improved using the handshake process. 

The authors in [52] and [59] used the fuzzy logic scheme to improve the network’s reliability and 

stability. FCMS was implemented for detecting a reliable vehicle. For clustering in VANET, 

FCMS1 and FCMS2 models are compared. Three input factors are for FCMS1. Vehicle 

trustworthiness (VT) is the fourth input factor in the FCMS2 model. The FCMS model improves 

the cluster stability and security. 

In [58], the authors presented the CVoEG model to improve the reliability and scalability of 

vehicular communications. The clusters are formed based on graph theory, and the vehicles are 

divided into an optimal number of clusters (ONC) by using the Eigen gap heuristic. A vehicle 

with a maximum Eigen-centrality score will be selected as a CH.  

Other algorithms like in [62] and [63] proposed to achieve a reduction in delay.  

ACOS algorithm [66] and SCalE [46] were proposed in to maximise cluster stability in vehicular 

networks. ACOS scheme is based on a heterogeneous vehicular network architecture, which 

allows the coexistence of DSRC and cellular networks for vehicular communications. The 

scheme uses the predicted driving behaviour of vehicles over a time horizon to maximise the 

clusters’ lifetime. 

Another algorithm was presented by Khan et al. in [70]; it is a heuristic clustering algorithm. The 

authors used connectivity-based CH selection and calculated the eccentricity for it. The highest 

eccentric vehicle in a cluster was assigned as the CH. This algorithm forms stable clustering and 

increases the probability of connectivity of the elected route. 

2.3.1.2 CH Selection 

The network’s robustness and scalability are strongly influenced by CH stability. The CH 

selection process is one of the most important parts of clustering. The stable CH guarantees that 

intra- and inter-cluster communications are kept. Each CH in the cluster is responsible for 

communicating with its members, RSU, and CHs of other clusters. The nodes’ interaction with 

other CH and their neighbours influences the selection of CH. To improve VANET stability, a 
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reliable vehicle can only be a CH. If a metric can resist unnecessary changes while maintaining 

connectivity, it is robust. A suitable metric can reflect the features of nodes and improve the 

performance of the clustering algorithm. The researchers considered various metrics for selecting 

the CH, such as received signal strength, relative speed, position, direction, and link lifetime. 

Each metric has some sort of precedence over the others because there isn't a single metric that 

can be the winner in all scenarios. Many clustering approaches are relying on a combination of 

multiple metrics rather than a single metric for selecting the CH. Table 2.2 shows the CH 

selection metrics for each clustering approach in the literature.  

Table 2.2 CH Selection Metric for the Algorithms in Literature 

Year Algorithm CH selection metric 

2008 PPC ID, travel time, and relative velocity 

2009 RMAC Speed, location, and direction 

2009 APROVE Distance and speed 

2009 DBC SNR, distance, and velocity 

2010 ALM Lowest Variance 

2010 CBDRP Moving direction 

2011 VWCA Distrust Level, degree, velocity, and direction 

2011 ASPIRE Network parameters 

2011 Zhang et al.[26] Relative mobility 

2012 Sp-Cl Relative velocity and distance 

2012 SBCA Relative Speed and RSS 

2012 TB Distance and relative velocity 

2012 FLBA Weighted stabilization factor 

2012 AMACAD Destination , distance, and relative velocity 

2012 TACR Position and trust value of vehicles 

2013 ALCA Velocity 

2013 VMaSC Average  speed 

2014 Arkian et al. [35] Speed, and neighbours 

2015 DMCNF The propagation delay ratio and number of the following car 

2015 AWCP Highway ID, direction, position, and speed 

2015 ARV Relative velocity 
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2015 VMaSC-LTE Average  speed 

2016 MOSIC Relative speed, relative distance, and relative mobility 

2016 NCABAT Lowest ID 

2016 CBVRP Velocity and location 

2017 MoDyC Relative position, moving direction, and link lifetime 

2017 KMFW Average distance 

2017 CBLTR Speed, life time, distance from threshold 

2017 SCalE Vehicle intentions 

2018 PMC Speed, Neighbours, Link lifetime , and Position 

2018 LRCA link reliability 

2018 UFC Relative position, relative velocity, and link lifetime 

2018 ECORA Life time 

2018 NMDP-APC Position and speed 

2019 Saleem et al.[52] Network Connectivity Level, speed, trust value, lane weight, distance 

2019 DHC Signal Strength, Relative Speed, Link Lifetime 

2019 EWCA Speed and Position 

2019 HCAR Lowest ID 

2019 CBSC Position and relative Speed 

2019 MBCA Relative velocity and direction 

2019 CVoEG Link Lifetime, position, and relative Speed 

2019 FCMS Relative speed, degree, security, and trustworthiness 

2019 P-DACCA Distance 

2019 CBL Direction and relative Speed 

2019 Abbas et al. [62] Avg distance, speed, time duration 

2019 Moore et al.[63] Speed, node degree, position 

2020 GOA Grasshoppers’ optimization-based node 

2020 CCA-IoV Average relative speed, link stability, average relative acceleration, and 

distance 

2020 ACOS Driver behavior 

2021 JCV Movement at the junction, relative position, time, and degree of a node 

2021 Maan et al. [69] Network connectivity level, lane weight, average velocity, and average 

distance 

2021 Khan et al. [70] Link connectivity 
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2021 KMRP Velocity, free buffer size, and node degree 

2022 RCMS Using SRP model, relative distance, and speed 

2.3.2 Cluster Maintenance Phase 

Because of VANETs dynamic topology, severe packet loss occurs due to frequent vehicle re-

connection and disconnection. The cluster maintenance process ensures strong connectivity by 

reducing frequent vehicle re-clustering and also achieves a stable link lifetime through CH. 

Additionally, a successful cluster maintenance method is necessary to prevent unnecessary 

cluster re-formations. Cluster maintenance involves vehicle joining, vehicle leaving, cluster 

merging, selecting secondary CH, and other cluster maintenance methods [4]. Some algorithms 

neglected this phase and did not mention it. The maintenance methods that have been used in the 

literature are presented in this section. 

In the vehicle joining and vehicle leaving processes, the CH sends frequent signals, and if it 

receives any signal from a vehicle, this new vehicle is assigned to that cluster and becomes the 

CM of that particular cluster. Then the CH will update its local database. When the CH loses the 

connection with a member vehicle, the information for that member is deleted from the CH’s 

local database. AWCP, CCA-IoV, DMCNF, and SCalE algorithms have used this method. 

The second method is the cluster merging process; it is more complex than the first one. Cluster 

merging takes place when two or more clusters can be represented by a single merged cluster, 

which can minimise the clusters’ number and improve the clustering efficiency. The conditions 

of the cluster merging are different for each algorithm. For example, in the ALM algorithm, 

cluster merging occurs if two CHs are in each other’s transmission range. Whereas, some 

algorithms like PPC used a distance threshold to control cluster merging, where the cluster 

merging occurs between two CHs if their distance is less than the dismiss threshold. In the 

VMaSC algorithm, the averaged relative speed of the two neighbouring CHs; referred to as 

AVGREL-SPEED, is compared. The CH with the higher average relative speed relinquishes his 

CH job and becomes a CM for the CH with the lower average relative speed. Also, the PMC 

algorithm uses the cluster merging method in the cluster maintenance phase, the CH node sends 
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merge request packets to other neighbouring CH to request cluster merging. If one of these two 

CHs has smaller following vehicles and high relative speed, the merging process is performed.  

Other algorithms addressed the two processes (cluster merging and vehicle leaving or joining) in 

the cluster maintenance phase, like TB, SP-CI, LRCA, MoDyC, UFC, and JCV. 

In CVoEG, a couple of vehicles may cause out-of-range communication due to small variations 

in speed or direction, which can change the shape of the cluster. Cluster splitting is a good 

solution to maintain the performance of the CVoEG model. Whereas, when two moving clusters 

get close to each other, the distance between their CHs becomes shorter, thus cluster merging is 

typically initiated by CH. 

A selected secondary CH is another approach used in the cluster maintenance phase. The 

secondary CH is selected by the CH according to different criteria. It resolves the unavailability 

of CH to increase the clustering stability. Some algorithms, like EWCA, CBDRP, SBCA, 

MBCA, and HCAR have used this method.  

Some algorithms used another cluster maintenance method, like the maintenance phase in the 

FLBA algorithm, which is adjustable to drivers’ behaviour along the way and has a learning 

technique for predicting the future position and speed of all CMs using a fuzzy logic inference 

system. 

2.4 Clustering Algorithms Comparison 

A comparison between the exiting clustering algorithms is shown in Table 2.3 in terms of 

transmission range, vehicle density, vehicle velocity, hop count, and traffic scenario. 

Table 2.3 Clustering Algorithms Comparison 

Year Algorithm Transmission 

Range 

Vehicle Density Vehicle 

Velocity 

Hop 

Count 

Traffic 

Scenario 

2008 PPC 250 m 100 - Multi Highway 

2009 RMAC 250 m 25,50,75 22 and 36 

m/s 

Single Highway 

2009 APROVE 250 m 100 15, 25, 35, Single Highway 
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40, 50 m/s 

2009 DBC 250m 100-500 11-31 m/s Multi Urban 

2010 ALM - 30-200 2,5,10 m/s Multi Random 

2010 CBDRP - 60 25-35m/s Multi Highway 

2011 VWCA Dynamic 100-

1000 m 

10- 350 19-33.3 m/s Single Highway 

2011 ASPIRE 250 m 400 11.1 , 22.2, 

33.3, 44.4 

m/s 

Single Highway  

2011 Zhang et al. [26] 120 m 100 10- 35 m/s Multi Highway 

2012 Sp-CI 80,125 m 20-150 22-44m/s Multi Highway 

2012 SBCA 300m 50-150 25-35 m/s Single Highway 

2012 TB 150-300 m , 

800-1000 m 

400 19,25,30 m/s Multi Highway 

2012 FLBA 200 m 0.05/-0.4/m 22-33.3 m/s Single Highway 

2012 AMACAD 100-200 m 50 11-31 m/s Single Urban 

2012 TACR 250,500 m and 

dynamic 

50,100,150 - Multi Highway 

2013 ALCA 200 400 13-22 m/s Single  Highway, 

urban 

2013 VMaSC 100-300 m 100 10-35 m/s Multi Highway 

2014 Arki et al. [35] - 90 16-33 m/s Multi Highway 

2015 DMCNF 100-300 m 100 10-35 m/s Multi Highway 

2015 AWCP 1000 m 25-200 33.3- 41.6 

m/s 

Multi Highway 

2015 ARV 250 m 100,300,500 10-30 m/s - Urban 

2015 VMaSC-LTE 100-300 m 100 10-35 m/s Multi Highway 

2016 MOSIC 200 m 100 10-35 m/s Single Highway 

2016 NCABAT 150 m 60 - Single Random 

2016 CBVRP 1000 m 20-200 0-33 m/s Multi Desert 

2017 MoDyC 200 m 100 10-40 m/s Single Highway  

2017 KMFW 100-1000 m 20-250 v/km 10-40 m/s Single  Highway, 

Urban 
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2017 CBLTR 250 m - 3-17 m/s - Highway  

2017 SCalE 150,250,350m 560 22 – 33 m/s - Highway  

2018 PMC 100-300 m 100 10-35 m/s Multi Random 

2018 LRCA 200,500 m 1500 10-30 m/s Single Urban 

2018 UFC 300 m 200 10-35 m/s Single Highway 

2018 ECORA 250 400 3-17 m/s - Highway  

2018 NMDP-APC - - 25 m/s - Highway  

2019 Saleem et al.[52] 300 m - 5-10 m/s - Highway  

2019 DHC 300 m 50-200 13.8- 30 m/s Single Highway,  

urban 

2019 EWCA 300 m 50-150 30 m/s Single Highway 

2019 HCAR 100-300 m 100 10-40 m/s Single Highway 

2019 CBSC - - 55.55 m/s Single Highway 

2019 MBCA 300 m 600 30 m/s - Highway 

2019 CVoEG 200-1000 m 50,1214 10-50 m/s - Highway 

2019 P-DACCA 150 m Variable 0-42 m/s Multi Highway 

2019 CBL - - 22 m/s Single  Highway  

2019 Abbas et al. [62] 500 m 20 11-33 m/s - Highway  

2019 Moore et al. [63] - 180 35-37 m/s - Highway  

2020 CCA-IoV - 100 10-35 m/s Single Highway 

2020 GOA Dynamic 100 22-30 m/s Multi Highway 

2020 ACOS 500 m 20-40vh/h 26.5-32 m/s - Urban 

2020 DPA 200 m - 20 m/s Multi Highway  

2021 JCV 200 m 100 10-35 m/s Single Highway 

2021 Maan et al. [69] 300 m 100 5-10 m/s Single Highway 

2021 Khan et al. [70] 300 m Depends on 

arrival rate 

16 -27 m/s - Highway 

2021 KMRP 250 m 100,150,200,250,

300 

16-33 m/s Single  Highway 

2022 RCMS 250 m 1200 10-30 m/s Multi Urban 

From Table 2.3, we can see that each algorithm used different assumptions (density, mobility, 

traffic scenario, transmission range, and model). So, it is challenging to fairly compare these 

algorithms. 
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2.5 Performance Evaluation and Simulation Tools 

2.5.1 Performance Evaluation Parameters 

Any clustering algorithm's performance can be assessed and evaluated using a variety of 

parameters; Cluster performance and network performance are the two most common metrics 

used for evaluating the performance of clustering algorithms: 

1. Cluster Performance Parameters represent how well clustering techniques perform and mirror 

how stable the network's backbone nodes are. The overall cluster performance and stability are 

described using these parameters. There are many cluster performance parameters; some of these 

parameters are [13], [73]: 

• Cluster number: It refers to the number of clusters that form during network operation. 

The clustering algorithm is more efficient when there are few cluster numbers. 

• CH Stability/CH Lifetime: It is the maximum period of time that a vehicle can spend 

performing the head role in a cluster. It is computed by dividing the overall lifetime by the time 

spent in the head’s role. 

• CM lifetime: It is the maximum period of time a node may be CM. To get its average, we 

divide the total lifetime of the CM by the total number of state changes from CM to another 

state. 

• CH change rate: It is the average CH’s number change per time. 

• Cluster change rate: Average clusters’ number changes for each vehicle in a unit of time. 

• Cluster size: Vehicles’ number in one cluster. 

A good and stable clustering algorithm should have a large cluster size, high CH and CM 

lifetimes, few cluster numbers, and low cluster and CH change rate. However, these parameters 

only can't describe communication links' details between vehicles in the network. 
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2. Network Performance Parameters: The overall network performance is described by these 

parameters, which include [4], [73]: 

• Throughput: It is the number of bits transmitted per second in any network. The higher 

value of throughput provides  better performance of the network designed. 

• Packet loss ratio or collision ratio: The rate of packets' loss during the transmission 

process 

• Packet Delivery Ratio (PDR): It is the ratio of the number of packets received by the 

destination to the total number of packets. 

• Overhead:  The average number of control messages received by the vehicle. 

• End to End Delay (E2E Delay), Packet Delay (PD), or Latency: It is the time taken for 

transmitting a packet from a source to a destination. 

All these parameters are utilised to estimate the context-based clustering approaches, like traffic 

prediction, routing, and information dissemination. A good and efficient clustering algorithm 

leads to large throughput, short E2E delay, low packet loss rate, high PDR, and small overhead.  

2.5.2 Simulation Tools 

The researchers have described numerous vehicular network simulators and traffic simulators 

and highlighted difficulties in simulating VANETs. NS2 is used to validate the effect of safety 

mobility in VANET. Our summary indicates that NS2 has been one of the most popular options 

for researchers. Due to their low complexity, NS3 and OMNeT++ are currently being utilised 

more and more, whereas C++, which is thought to be unreliable, it was only employed by a few 

researchers for network simulation [13]. NS2 has the same feature as Simulation of Urban 

Mobility (SUMO). SUMO is one of VANET’s traffic simulators, and it can simulate urban 

mobility. For this simulator, the dataset that is most commonly used in literature is Open Street 

Map (OSM) and Google Map. Others used a mobility model generator for vehicular networks, 

which is called MOVE. It is a component of the SUMO traffic simulator that integrates the 

JAVA platform. Its software is able to track files containing realistic vehicle movement data. 
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Researchers usually use modelling based on real-world observations to achieve higher levels of 

reliability and accuracy in simulation results [74].  

MATLAB is a powerful tool for modelling system and analysing calculations. It has the ability 

to calculate complicated algorithms and provides quick results. MATLAB is more powerful than 

others in analytical. It can be presented in a variety of scheme graphs and is adaptable to any 

algorithm. But in another, many researchers used NS2, NS3, SUMO, etc. It depends on the skill 

and research goal of the researchers [75]. MATLAB also supports socket communication like 

OMNeT++ and helps us to develop the event-driven VANET scenario. NS2 and NS3 are good in 

network simulation; but unable to run in-depth analyses in an algorithm. SUMO can run in-depth 

analysis in the algorithm, but it needs a third party like Traffic Control Interface (TraCI) for 

MATLAB and uses it to make the program. TraCI is an Application Programming Interface 

(API) developed in MATLAB that enables communication between any MATLAB-written 

application and the SUMO simulator. It combines all advantages and compensates for the 

disadvantages of SUMO and MATLAB [76]. TraCI allows users to control SUMO objects such 

as vehicles, traffic lights, junctions, etc., through MATLAB, which means it is designed to get 

access to the traffic running on the road simulated. Table 2.4 presents a comparison between the 

most used simulators according to different criteria.  

Table 2.4 Simulators Comparison 

Criteria  NS2 NS3 OMNeT++ SUMO MATLAB 

Open source Yes  Yes  Open-source  (for study 

and research purposes), 

Commercial (for 

industrial purposes) 

Yes  Yes  

Language 

support 

C++ C++, Phyton C++  C++ C, C++, 

JAVA 

Scalability  Yes  Yes  Yes  Yes Yes  

Solve Complex 

Analytical 

No No No No Yes 

Realistic Model Yes  Yes  Yes  Yes  Yes  

Supported OS Linux, 

Unix, 

Windows 

Linux, Unix 

 

Linux, Unix, Windows, 

macOS 

Linux, 

Windows, 

macOS 

Linux, 

Unix, 

Windows   

 

Ease to use Hard Moderate  Moderate Hard Easy  
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Table 2.5 presents the evaluated parameters and the simulator tools used for each algorithm in 

the literature. Each clustering algorithm used different evaluated parameters to evaluate its 

performance and used different simulator tools in the implementation. The clustering algorithms 

in the literature are classified based on their objectives as shown in Table 2.5; Stability 

improvement, security improvement, scalability and reliability improvement, routing 

improvement, delay reduction, overhead reduction, and network performance improvement. 

Table 2.5  Simulator tools and Evaluation Parameters for the Exiting Clustering Algorithms 

Ref Algorithm Goal Simulator 

Tool 

Evaluation Parameters 

[18] PPC Stability improvement NS2 Mean cluster diameter, Cluster 

reconfiguration rate, and 

throughput. 

[19] RMAC Routing improvement NS2 Cluster residence times, Node re-

clustering time, Average error of 

estimatted location. 

[20] APROVE Stability improvement NS2 CH lifetime, CM lifetime, CH 

change rate. 

[21] DBC Stability improvement VANET 

MobiSim and 

Java 

Average cluster size, average 

number of clusters, average 

percentage of clustered nodes, 

average number of CH changes per 

node, average time which node 

spend being clustered. 

[22] ALM Stability improvement SUMO, SIDE/ 

SMURPH 

CH lifetime, Status changes per 

Node, CH density. 

[23] CBDRP Routing improvement NS2 Latency, PDR,  Average Routing 

Overhead 

[24] VWCA Security improvement MATLAB CH and CM lifetime, PDR. 

[25] ASPIRE Stability improvement , 

overhead reduction 

NS2, MOVE CH change rate, CH lifetime, CM 

lifetime, cluster size, percent 

connectivity.  

[26] Zhang et at. [26] Stability improvement NS2 CH lifetime, CM lifetime, CH 



State-of-the-Art of Clustering in VANET                                                                Mays. K. J. Alsabah 

 

40 | P a g e  
 

change rate. 

[27] Sp-Cl Stability improvement - Average cluster change, Number of 

clusters, and average cluster 

lifetime. 

[28] SBCA Stability and network 

performance 

improvement 

NS2 Average cluster lifetime, overhead, 

and packet delivery. 

[29] TB Stability improvement C++ Average cluster change, Average 

cluster lifetime 

[30] FLBA Stability improvement NS2, 

MOVE, 

SUMO 

Average CH time, Average CM’s 

dwell time, Average cluster size. 

[31] AMACAD Stability and network 

performance 

improvement 

Java CH lifetime, Membership lifetime, 

Re-affiliation rate. 

[32] TACR Routing improvement - Routing Overhead, CH Selection 

Time, Cluster Creation Time, and 

Probability of message 

Transmission. 

[33] ALCA Security improvement VANET 

MobiSim 

Node participation time, 

Throughput, Efficiency, CH 

duration, Connectivity ratio 

[34] VmaSC Stability improvement NS3, 

SUMO 

CH/CM Duration, CH Change 

Rate, Overhead, Number of 

Vehicles in SE state. 

[35] Arkian et al. [35] Stability improvement OMNeT++, 

SUMO 

CH lifetime, cluster number 

[36] DMCNF Stability improvement 

and  

overhead reduction 

NS2, 

VanetMobiSi

m 

Average CH/CM durations, 

Average number of clusters, 

Average CH change number, and 

average overhead. 

[37] AWCP Stability improvement  NS2, JOSM, 

SUMO, 

Average Cluster Lifetime, PDR, 

overhead. 
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MOVE 

[38] ARV Stability improvement SUMO Average Cluster-Head lifetime, 

Percentage of CHs. 

[39] VMaSC-LTE Stability improvement NS3, 

SUMO 

CH/CM Duration, CH Change 

Rate, Overhead, Number of 

Vehicles in SE state. 

[40] MOSIC Stability improvement NS3 Average CH/CM Duration, 

Average Number of clusters, 

Average Control Message 

Overhead, Average CH Changes 

Rate. 

[41] NCABAT Routing improvement JADE Throughput, E2E Delay, and PDR. 

[42] CBVRP Routing improvement - PDR, E2E delay, Number of cluster 

reconstruction, Routing cost. 

[43] MoDyC Stability improvement NS2, SUMO CH duration,CM duration, cluster 

number, CH change rate, cluster 

efficincy, state change, number of 

CMs 

[44] KMFW Stability improvement NS2 Persantage connectivity, CH 

duration, signal quality 

[45] CBLTR Routing and Network 

performance 

improvement 

MATLAB, 

SUMO 

No. Hello Message , Avg No. of 

CH Changes, E2E Delay, 

Throughput. 

[46] ScalE Stability improvement MATLAB CM lifetime. CH re-election, 

Reaffiliation 

[47] PMC Stability improvement NS2, 

VanetMobiSi

m 

Average CH/CM Duration Time, 

Number of Average Cluster Head 

Changes, Clustering Overhead. 

[48] LRCA Network performance  

and stability 

improvement 

NS2, 

SUMO 

CH/CM duration, CH change rate, 

PDR,E2E delay, overhead 

[49] UFC Stability improvement SUMO CH and CM duration, Clustering 

efficiency, Number of initial CHs, 
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CM disconnection rate, CM re-

clustering delay, and CM re-

clustering success ratio. 

[50] ECORA Routing overhead 

reduction 

MATLAB, 

SUMO 

Control overhead message 

[51] NMDP-APC Delay reduction, 

reliability improvement  

MATLAB Number of Iteration, number of 

Clusters 

[52] Saleem et al.[52]  Stability and 

reliability improvement 

MATLAB Cluster size, CH duration 

[53] DHC Stability improvement SUMO CH/CM lifetime, Number of 

changed states, packet overhead, 

Cluster formation rate, CH 

Alienation. 

[54] EWCA Stability 

improvement and 

overhead reduction 

NS2, 

SUMO 

Cluster stability, number of 

clusters, and E2E. 

[55] HCAR Stability improvement NS2, VANET 

MobiSim 

CH lifetime,  average overhead, 

and number of cluster 

[56] CBSC Security and stability 

improvement 

OMNeT++, 

SUMO 

Average CH/CM Lifetime, 

Average Number of Re-affiliation 

Times, Packet Loss Rate. 

[57] MBCA Stability improvement OMNeT++, 

SUMO, and  

VIENS 

Average CH duration, average CM 

duration, PDR, network delay, and 

overhead. 

[58] CvoEG Scalibilty  improvement  MATLAB, 

SUMO, 

MOVE. 

Number of clusters, delay, 

reliability, throughput, PDR 

[59] FCMS Security and stability 

improvement 

- Vehicle Remain or Leave Cluster. 

[60] P-DACCA Collision avoidance NS2 Cluster stability, overhead, and 

collision probability.  

[61] CBL Stability improvement MATLAB, 

SUMO 

No. of Relay nodes 
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[62] Abbas et al. [62] Delay reduction, 

reliabiliry improvement 

MATLAB, 

NS3, 

SUMO,MOV

E 

CDF, CH duration, cellular sum 

rate, throughput 

[63] Moore et al. [63] Delay reduction, 

Scalibilty  improvement 

NS3 Delays confidence interval, CCH 

and SCH utilization 

[64] GOA Stability improvement MATLAB Number of clusters 

[65] CCA-IoV Stability improvement SUMO, NS2 Avarege CH and CM duration, 

cluster number. 

[66] ACOS Stability improvement SUMO, NS2 CH duration, CM duration, CH 

change rate. 

[67] DPA Reliability improvement MATLAB V2V Reliability, V2I Reliability 

[68] JCV Network performance 

and stability 

improvement 

SUMO, 

CVANETSIM

, JAVA 

CH duration, CM duration, CH 

change rate, number of cluster, 

cluster participation, number of 

CM. number of EN, ratio of CM, 

EN duration, overhead, delay. 

[69] Maan et al. [69] Stability improvement MATLAB, 

SUMO 

CH duration, average cluster size. 

[70] Khan et al. [70] Stability and relaibility 

improvement 

MATLAB, 

SUMO, 

MOVE. 

Number of clusters, link 

connectivity, packet loss 

[71] KMRP Stability and routing 

improvement 

NS2 Throughput, delay, PDR 

[72] RCMS Network performance 

and stability 

improvement 

OMNeT++, 

SUMO 

Cluster lifetime, PDR, delay, 

overlap rate, reconstruction time 
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2.6 Literature Problems 

Some of the most important issues in this literature can be concluded as follows:  

1. The high dynamics of the VANET environment make the formation and maintenance of 

stable clusters a big challenge issue. So, many approaches focused on the CH selection 

and gave less attention to the other phases. An efficient cluster formation, along with the 

annotated CH vehicle, is responsible for improving the network performance. 

2. VANET is a continuously changing topology, which creates challenges in establishing a 

connection from one source to the destination vehicle. If the connection is unreliable, 

then the data loss may be high as the carrying vehicle (CH) may change its direction and 

speed. Accordingly, a stable cluster and a reliable CH reduce or limit information loss. 

Sustaining a CH for a long period is difficult. 

3. Mobility and neighbourhood are the most metrics taken, and these metrics are lost in the 

urban scenario as the vehicle speed is low and there is huge congestion in peak hours. 

Thus, to successfully analyse the networks, it is necessary to look for new metrics or 

cumulative metrics.  

4. The work on the real scenario is mostly limited to the highway; the urban scenario 

analysis is very limited and few (9 only out of 55). Designing a clustering algorithm for 

an urban environment is more complicated than designing it for a highway, due to a large 

number of intersections and the varied speed of vehicles as a result of congestion. 

5. Some of the methods designed in the literature have overlooked the effect of dynamic 

change in these networks. 

6. Researchers have made clusters and selected the CH by calculating the vehicles’ 

behaviour in the network, velocities, moving directions, and positions in lanes. Fuzzy 

logic has been used, such as in [30], [52], [59], and [69], and other used heuristic 

algorithms, such as in [55] and [70]. Fuzzy logic schemes require tuned membership 

functions to decide for CH selection, which necessitate considerable experience and 

behaviour analysis of vehicles on a particular road. Owing to fast-changing topology and 

distributed VANET architecture, heuristic algorithms hardly make decisions due to 

several iterations in the calculation. They cannot cope with the changing frequency of a 
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VANET environment in a crowded city. However, we assume that in highways with low 

vehicle density, they may present good performance. 

2.7 Conclusion  

The primary focus of this chapter is to conduct an intensive survey of 55 clustering algorithms 

that have been observed and studied from 2008 to 2022. These algorithms have been summarised 

and classified in terms of clustering procedures: cluster formation according to hop count, CH 

selection, and cluster maintenance. Also, we have made comparisons between these algorithms 

based on transmission range, density, velocity, hop count, and traffic scenario. Finally, some of 

the most common metrics used for evaluating the performance of clustering algorithms and 

simulator tools have been presented. Through the study, it was noted that the performance 

evaluation metrics and simulation tools for each algorithm are very different, so it is very 

difficult to know which algorithm or method gives the most efficient performance.  

With all the gaps in the literature studied in Section 2.6, our primary goal in the next chapter is to 

design a complete solution for VANET, especially for the urban scenario. Our first proposed 

scheme is presented; it is called the HyperGraph Clustering Model (HGCM). The designed 

approach has cluster formation, CH selection, and maintenance. The evolving nature of VANETs 

is meritoriously captured using the concept of hypergraphs, and the clusters are formed through 

the designed vehicular-hypergraph-based spectral clustering algorithm. The CH is selected 

considering the criteria for maintaining a stable connection with the maximum number of 

neighbours. Different metrics (relative speed, neighbouring degree, eccentricity, and trust score) 

are introduced for selecting the CH and using the cumulative multimeric scheme to increase the 

clustering stability. The designed approach is tested on a real map of Baghdad city with the help 

of OSM and SUMO to generate realistic traffic. SUMO supports the TraCI API for MATLAB 

interfacing. The network is triggered from MATLAB through the TraCI API and data is recorded 

at every simulation second.  
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 3.1 Introduction  

In mathematics, graphs are used to represent pairwise relationships between things; graph theory 

is the study of graph. In graph context, a network consists of vertices, also known as nodes, 

connected by edges, also known as links. An edge in a graph connects two vertices precisely. 

Graph theory is utilized to solve problems with a reasonably natural graph or network structure, 

such as those involving road network, machine learning, and communication networks. A 

network of vehicles is presented as a graph, in which a vehicular node is connected with two other 

vehicular nodes [58],[70], and [77]. This graphical representation may be suitable in sparse density, 

such as highways or minimally populated cities. On the contrary, in dense urban scenarios, a 

vehicle is always connected with more than two vehicles, and graph theory does not fit there. 

Hypergraphs are a suitable representation of dense vehicle networks. When a graph's edges 

(hyperedges) are permitted to connect more than two vertices, the resulting structure is known as 

a hypergraph. In other words, a hyperedge can link a group of vertices together because they are 

similar to one another in some characteristics. 

3.1.1 Clustering Methods based on Hypergraph 

In a graph and hypergraph, a cluster is named community, vehicle clustering can be categorized 

as a community detection problem, and this problem concentrates on grouping similar nodes 

together using the provided node attributes. Hierarchical clustering algorithms and partitioned 

clustering algorithms are the two main categories of hypergraph clustering techniques. On the 

basis of the existing cluster structure, hierarchical algorithms construct cluster. These algorithms 

build partitions sequentially, whereas partitioning methods only use one partition to separate 

nodes into clusters [14]. 

1. Hierarchical Algorithms: it is an effective technique for analyzing networks' general 

structure. It uses a hierarchical tree called a dendrogram to show the connections between the 

nodes in a graph. One major benefit of hierarchical clustering is that it partitions without 

regard to the number of clusters in a graph [14]. 
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There are two methods for hierarchical clustering: agglomerative algorithms and divisive 

algorithms. Smaller clusters are iteratively combined into larger ones via agglomerative 

algorithms, which work "from the bottom up" and "from the top down" divisive algorithms 

divide large clusters into smaller ones [78]. 

The drawbacks of hierarchical algorithms;  

1. To find the best partition among the sequences of partitions, we need to propose an extra 

criterion.   

2. Hierarchical clustering does not scale effectively, which is another issue. 

2.  Partitioning Algorithms: it is the most basic and simplest type of cluster analysis, which 

divides the items' set into a variety of separate groups or clusters. The most popular partitioning 

techniques are: 

A. K- means clustering method   

 James Macqueen first presented the K-means algorithm in 1967, yet it remains one of the most 

often used unsupervised clustering algorithms due to its simplicity, ease of implementation 

efficiency, and empirical success. A set of data is divided into K number of clusters by K-means 

based on their characteristics [78], Figure 3.1. 

Naturally, the K-means clustering method takes substantially less time and produces results 

similar to those of hierarchical clustering. K-means clustering has this benefit over other methods 

in large-scale networks. Due to its simple implementation and fast convergence, K-means 

clustering is popular. 
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Figure 3.1 K-Means Clustering 

However, there are drawbacks preventing K-means clustering from being used in dynamic 

and large-scale networks. First of all, the initial set of centers has a significant impact on K-

means clustering. Varied initial centers produce different clustering outcomes, and as a result, 

different iterations are needed to reach convergence. The most common method is a random 

selection. It randomly chooses the initial cluster centers. Although this method is simple to 

implement, the outcome varies with different initial centers. The effectiveness of this algorithm 

cannot be guaranteed [79]. 

Secondly, how to determine the value of K is another issue. The number of the clusters is 

variable due to node mobility, particularly in a dynamic network. 

Another drawback of this approach, it is not capable of disconnecting the non-linearly 

distinguishable clusters. To resolve this, spectral clustering is used based on eigenvectors of the 

matrix, by making an attempt to minimize the cut. 
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B. K-Medoids Clustering Method 

Another partitioning clustering method is a K-medoids. 𝑁 nodes are partitioned with a 

preassigned number; K in both K-means clustering and K-medoids clustering. K-means 

clustering technique and simple K-medoids are very similar. It appears that there may not be a 

need to study simple K-medoids clustering when we already have traditional K-means clustering 

[80]. 

In contrast to K-means clustering, K-medoids clustering is more resistant to outliers. The 

centroid of the cluster is what K-means refers to as the center. It indicates that the cluster's center 

may not be a real node. According to K-medoids clustering, a representative node known as a 

medoid should be at the center of each cluster, Figure 3.2. In other words, we might say that the 

cluster center should be a node that already exists and can be thought of as the middle of all the 

nodes in the same cluster [14]. 

 

Figure 3.2 K-Medoids Clustering 
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C. Spectral Clustering 

    From graph theory, spectral clustering is derived. For spectral clustering, the Laplacian matrix 

(𝐿) is a major tool. The original nodes are converted into a metric space using eigenvectors of 𝐿 

as its coordinates. Combining with K-means clustering in the final step, spectral clustering can 

be explained as K-means clustering in a specific metric space [81]. 

The major drawback of spectral clustering limits the employment in large scale networks. 

Spectral clustering has recently gained popularity as one of the most often used modern 

clustering techniques. It performs frequently better than conventional clustering methods like the 

K-means algorithm and is easy to implement. It can also be solved effectively by typical linear 

algebra software [78]. 

Partitioning clustering involves the formation of new clusters by merging or splitting the clusters 

instead of following a hierarchical order. Also, it is comparatively more reliable than hierarchical 

clustering. 

 In this chapter, a newly vehicular-hypergraph-based spectral clustering model using Tensor 

Trace Maximisation method (TTM) is introduced. 

3.1.2 Why is VANET a Hypergraph Network? 

As discussed in Chapter 2, To implement a robust clustering algorithm, there are problems need 

to be solved: a clustering methods need to be designed and metric has to be used to select the 

CH. Vehicle cluster generation is a populated concept, and various scholars have already addressed 

it. In our work, the clusters are generated using the hypergraph based spectral clustering method. 

The following are the key reasons to represent VANET as a hypergraph: 

 VANET is a cooperative network where every decision depends on the information shared 

by neighbouring vehicles [82]. 

 In the graphical representation, a loss of information occurs in paired connections. Pairwise 

graph models don't have the representational capacity needed for tasks like analysis and 

learning to properly capture and display higher-order information. Hypergraphs, which 

depict interacting elements as nodes and hyperedges, are useful for capturing higher-order 

interactions in these systems.  
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 All vehicles in the network act as either sources, destinations or routers, depending on 

where they are in the network’s hierarchy. One of the primary responsibilities of these 

nodes is to disseminate the data throughout the network. Vehicular mobility and the 

communication link amongst vehicles that is constantly breaking and reconnecting cause 

such networks to grow in nature. The relationships amongst nodes in more diversified 

vehicular networks are more difficult to understand because of the networks’ ever-

expanding character. As a result, complex networks now utilise super networks. 

Hypergraph-based and network-based are super networks that exist in the literature [82]. 

Hypergraphs pay more attention to the dynamic evolution process, making it possible to 

conduct a dynamic analysis of complicated networks. 

 The hypergraph theory has the benefit of ensuring the homogeneity of points and edges. 

This makes it easier to express how nodes and edges relate to one another. Consequently, a 

hypergraph, in which one vehicle can communicate with numerous vehicles, can be used to 

modulate the representation of networks. 

3.1.3 Proposed Contributions 

A novel approach for clustering formation and maintenance of a VANET structure in an urban 

scenario is introduced in this chapter. It is called the hypergraph clustering model (HGCM).The 

CH stability is governed by a cumulative multimetric factor inclusive of relative speed, 

eccentricity, neighbourhood and spectrum sensing based on cooperative trust. The contributions 

of this proposed are listed below: 

 A formulation of VANET through a hypergraph is introduced. The construction of the 

hypergraph is designed using the distance proximity amongst the vehicles in the network.  

 Practical and optimal partitioning of the hypergraph through tensor trace maximisation 

(TTM) is proposed. A high order has all the edges but with negligible weights. Thus, the 

adjacency matrix is nearly sparse, and the overall computational complexity is effectively 

reduced.  

 Optimal clusters are selected in accordance with the Calinski–Harabasz concept. This 

method is an external criterion for selecting optimal clusters. Hence, the information is 
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independent, and the structure of the information is inherited. Such a method is also 

preferred for convex clustering.  

 The network’s performance, especially in an urban scene, can be improved by installing 

auxiliary facilities, such as RSUs. Here, an evolving graph structure of the traffic is 

conceived using betweenness centrality. 

 The challenge of classification is used to reinvent spectrum sensing. The method 

proposed for sensing is long short-term memory (LSTM), which is extensively trained for 

all signal types, including noise. Thus, it can sense an untrained signal and classify a 

vehicle as primary or secondary.  

 The scheme of a cumulative multimetric for selecting a CH is presented, through which 

strong connectivity and stable link lifetime are maintained. Extensive simulation and 

comparison of cumulative CH selection scheme with individual measures are presented 

to show its supremacy in terms of stability. The stability of the CH enhances the routing 

performance of the designed approach in terms of PD and throughput. 

3.2 Proposed Model 

A multilane road structure in an urban scenario is considered. Fluctuating density of building 

infrastructure and vehicular mobility with total number of vehicles 𝑁 are infused into the real map 

scenario with corresponding speed and locations. Each OBU equipment has the same transmission 

range 𝑅𝑣𝑒ℎ𝑖. The same communication module is taken to communicate with auxiliary facilities, 

each having a transmission range 𝑅𝑅𝑆𝑈. Communication amongst vehicles is carried out using the 

V2V protocol. GPS unit and IEEE 802.11p radio equipment are embedded inside the OBU. By 

contrast, V2I is used for communication between vehicles and RSU. Every car in the network 

functions as a node (V), acting as a source, destination, or router.  

The main task of these nodes is to broadcast information within the network. The vehicles are said 

to be one-hop neighbours if the distance between them is less than or equal 𝑹𝒗𝒆𝒉𝒊 and multihop if 

the distance between them is greater than 𝑹𝒗𝒆𝒉𝒊. In this section, the formulation for designing 

VANET as a hypergraph-partitioning problem is discussed in detail. The complete work can be 

divided into four major steps:  
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1. Neighbouring vehicle identification and adjacency matrix generation 

2. Hypergraph-based spectral clustering algorithm for cluster formation 

3. RSU deployment and cluster members allotment 

4. Stable CH selection 

The flow diagram of the complete work is shown in Figure 3.3. 

 

Figure 3.3 Flow diagram of the proposed HGCM Scheme 
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The pseudo code of the suggested work is jotted down in Algorithm 3.1. 

Algorithm 3.1: Pseudo code of the proposed scheme for stable CH detection 

Input: Vehicle-to-vehicle transmission range (𝑹𝒗𝒆𝒉𝒊), RSU-to-vehicle transmission 

range (𝑹𝑹𝑺𝑼). 

1. For i=1:vehicles 

a. All neighbouring vehicles within the vehicle transmission range are identified 

2. End for 

3. Determine the similarity matrix based on how close the vehicles are to one 

another in terms of distance  

4. Generate an adjacency matrix  

5. Create Eigen values for each vehicle by using hypergraph-based TTM 

6. Use Calinski-Harabasz and k-mean clustering to determine the ideal number of 

clusters. 

7. The centrality index gives the RSU deployment location 

8. Simulate the VANET for different vehicle densities in the network and collect 

the vehicle moving angle, locations and other information until every vehicle 

leaves the network. 

9. For i=1: clusters 

a. For j=1: vehicles in cluster 

i. Calculate the CH parameters: neighbourhood degree, relative speed, trust 

score and eccentricity 

ii. Combine these matrices to obtain a single score for each vehicle 

iii. Highest-scorer vehicle is termed as the CH 

b. End for 

10. For i= 1: vehicles 

          i. Selected CH sends frequent polling signals 

           ii. If ( the distance between the CH and vehicle <= CH transmission range) then  

              a. The CH receive signal in return within a stipulated time period 

              b. CH 𝐴𝑑𝑑𝑠 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑅𝑆𝑈 𝐿𝑖𝑠𝑡 & CH 𝐿𝑜𝑐𝑎𝑙 𝐿𝑖𝑠𝑡  

Else 

         a. The vehicle does not reply within the speculated period time_span 

         b. This vehicle is considered to be disconnected and  leave the cluster 
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         c. CH 𝑅𝑒𝑚𝑜𝑣𝑒𝑠 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑅𝑆𝑈 𝐿𝑖𝑠𝑡 & CH 𝐿𝑜𝑐𝑎𝑙 li𝑠𝑡 

                        End if 

             End for 

11.    End for 

 

3.2.1 Formulation as hypergraph partitioning 

A connected weighted hypergraph is a three-tuple of 𝓗 = (𝑽, 𝓔, 𝑾), where each edge 𝓔 links a 

subset of vertices 𝑽 in the hypergraph and may be linked with non-negative weight. This structure 

is composed of n vertices, 𝑽 = {𝒗𝒊|𝒊 =1,2,…n}, where each vertex is a vehicle in our study, 

𝓔 = 𝒄𝒊𝒋 ∶  {< 𝒗𝒊, 𝒗𝒋 >|𝒗𝒊 ∈ 𝑽 ⋀ 𝒗𝒋 ∈ 𝑽 ⋀  ( |𝒅𝒊𝒋|  ≤  𝑹𝒗𝒆𝒉𝒊 )} is an edge set, and 𝑾 → [𝟎, 𝟏] is 

the weight associated with each edge. The distance of each vehicle constitutes the edge of each 

hyperconnection. The hyperedge connection is defined in Definition 1. 

Definition 1: Two vehicular nodes 𝑣𝑖  and 𝑣𝑗  at time 𝑡 are said to be connected if 

 𝑐𝑖𝑗 = {
1           𝑑𝑖𝑗  ≤  𝑅𝑣𝑒ℎ𝑖 

0          𝑑𝑖𝑗  >  𝑅𝑣𝑒ℎ𝑖
                                                                (3.1) 

The connection between two vehicles is established using the distance proximity formulation. 

Here, the connection is established if the distance between the two vehicles 𝑑𝑖𝑗 is less than or equal 

the transmission range of the vehicle nodes.  

3.2.2 HGCM Generation Model 

The cluster generation part of VANETs is discussed in this section. An urban scenario is 

considered for the simulation, and location information is shared with every neighbouring vehicle 

in the test case. A network hypergraph is constructed using that location information, and this 

section discusses the formulation of the vehicle hypergraph.   

Our proposed model aims to cluster vehicles so that minimum bandwidth occupancy at any instant 

is achieved [83]. In the urban scenario, road congestion is unavoidable, leading to slow-moving 

traffic. The location, speed and vehicles in an area affect the stability of the clustering [84]. Each 
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vehicle in a cluster is categorised as either CH or CM. Only one CH is conventionally allowed in a 

cluster, except in special cases of warlike fields [85]. In this proposed, the maximum possible 

vehicle density 𝑁 is considered for the clustering algorithm. Using the location information, each 

vehicle finds its neighbour. A similarity matrix is generated, whose cell elements indicate the 

connection strength with another corresponding vehicle, as shown in Figure 3.4. The adjacency 

matrix showcases the relation amongst the vehicle nodes, and the incidence matrix showcases the 

relation between the vehicle nodes and the edges formed. 

 

Figure 3.4 Hypergraph Based VANET Analysis 

In the process of spectral clustering, information loss is evident. To prevent it, the TTM clustering 

has been proposed to use for spectral clustering of vehicles. Spectral clustering using TTM is 

introduced in this subsection. Setting up k disjoint sets  𝑽𝟏, … … 𝑽𝒌  from the weighted hypergraph 

𝑽 is problematic, such that the partitions are balanced and the overall weight of the edges inside 

each cluster is high (vehicle connectivity that is dense) [86]. The degree of every node is the 

quantity that indicates how many vehicular nodes are connected to it, 𝒗 ∈ 𝑽, determining the total 

weight of incident edges 𝒗, i.e. 𝒅𝒆𝒈(𝒗) = ∑ 𝒘𝒆𝒆 ∈𝓔:𝒗 ∈𝒆 .  
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The volume is then described as 𝑪𝑴(𝑽𝟏) = ∑ 𝒅𝒆𝒈(𝒗)𝒗𝝐 𝑽𝟏
, which is the quantity of nodes that 

have occurred on node 𝑽𝟏 , such that 𝑽𝟏 ⊆ 𝑽. The following is the definition of the association 

between the edges in 𝑽𝟏 :  𝒂𝒔𝒔𝒐𝒄(𝑽𝟏 ) = ∑ 𝒘𝒆 . These distinct partitions' normalised associativity 

is provided as                                                                    

                                   𝑷𝒂𝒓 (𝑽𝟏, … … 𝑽𝒌) = ∑
𝒂𝒔𝒔𝒐𝒄(𝑽𝒊 )

𝑪𝑴(𝑽𝒊 )

𝒌
𝒊=𝟏                                                          (3.2) 

The tensor (order 𝑚) is the adjacency matrix that is defined here, 

                                   𝐴𝑖1,𝑖2,……𝑖𝑚
= {

 𝑤{𝑖1,𝑖2……..𝑖𝑚}     𝑖𝑓 𝑖1,𝑖2,……,𝑖𝑚 𝑎𝑟𝑒 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 

0                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                (3.3) 

It is possible to rewrite the normalised associativity in terms of 𝐴 and 𝑌. (inverse of the number of 

vehicles connected to a node) as  

                          𝑃𝑎𝑟𝑖∈{1,..𝑘} =
1

𝑚! 
𝑇𝑟𝑎𝑐𝑒(𝐴 ×1 𝑌(1)𝑇

×2 𝑌(2)𝑇
×3 𝑌(3)𝑇

… … .×𝑚 𝑌(𝑚)𝑇
)         (3.4)      

where ×𝑙 is the model-l product.  

𝑌(1)𝑇
, 𝑌(2)𝑇

, 𝑌(3)𝑇
… … . , 𝑌(𝑚)𝑇

∈ ℝ𝑘×𝑚, This indicates how many CMs are connected to each 

vertex's node 𝑣𝑖. Y
i∈{1,2..m}, as shown as follows: 

                            𝑌𝑖 =
1

∑ 𝐶𝑀(𝑉𝑖)𝑘
                                                                    (3.5) 

Spectral clustering takes into account the defined adjacency matrix [87], and the diagonal matrix 

(degree matrix) 𝐷𝑖𝑔 is obtained by transversely orienting this hypergraph that is the total of all 

vehicle node runs that are one-hop next to node 𝑣𝑖.                  

                            𝐷𝑖𝑔𝑖𝑖 = ∑ 𝐴𝑖𝑗
𝑁
𝑗=1                                                                   (3.6) 

For the Laplacian graph computation, this study utilises the unnormalised Laplacian matrix based 

on the Fiedler vector defined as 

                           𝐿 = 𝐷𝑖𝑔−1/2𝐴𝐷𝑖𝑔−1/2                                                          (3.7) 
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The top 𝑘 eigenvector (𝑈 = 𝑒𝑖𝑔(𝐿)) is taken for k-means clustering that provides 𝑘–partitions of 

the VANET hypergraph structure. These divisions are similar to how the vehicular network's 

cluster formation appears. They are further pruned to get the ideal collection of clusters for 

maintaining the VANET. The pseudocode for the spectral clustering is listed in Algorithm 3.2.  

Definition 2: The weighted hypergraph ℋ = (V, ℰ, W), and its cluster is a tuple of  

(𝐶𝑛𝑢𝑚, 𝐶𝑜𝑝𝑡𝑖𝑚𝑎𝑙), where 

𝐶𝑛𝑢𝑚 = {𝑐𝑖 | 𝑖 = 1, 2, … . . 𝑘} is a cluster set, where 𝑘 is the total number of clusters. ∀𝑐𝑖  ∈

 𝐶𝑛𝑢𝑚, 𝑐𝑖 = {𝑣𝑗|𝜏(𝑣𝑗) = 0 ∨ (𝜏(𝑣𝑗) = 1 ∧ ∃𝑣𝑘 ∈ 𝑁(𝑣𝑗) ∧  𝜏(𝑣𝑘) = 0)}. 

𝐶𝑜𝑝𝑡𝑖𝑚𝑎𝑙 represents the optimal set of clusters, 𝐶𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = [𝐶𝑛𝑢𝑚: ∀  𝑚𝑎𝑥(𝑠 )]. 

The clustering efficiency can be evaluated using the Calinski–Harabasz index (𝑠) [88]. This index 

checks the closeness of vehicles in a cluster and the dispersion of all clusters by using Equation 

(3.8). The maximum value of s is the desired efficiency in the clustering.  

                         𝑠 =
𝑡𝑟(𝐵𝑘)

𝑡𝑟(𝑍𝑘)
 ×  

𝑉𝑒ℎ𝑖𝑛𝑢𝑚−𝑘

𝑘−1
                                                                (3.8) 

Here, 𝑘 represents the clusters’ number, and each has the size of 𝑉𝑒ℎ𝑖𝑛𝑢𝑚. 𝑡𝑟(𝐵𝑘) is the dispersion 

amongst clusters, and 𝑡𝑟(𝑧𝑘) is the dispersion amongst vehicles in a cluster. These two terms are 

calculated in Equations (3.9) and (3.10). 

𝑍𝑘 = ∑ ∑ (𝑥 − 𝑐𝑞)(𝑥 − 𝑐𝑞)𝑇
𝑥∈ 𝐶𝑞

𝑘
𝑞=1                                                (3.9) 

𝐵𝑘 = ∑ 𝑛𝑞(𝑐𝑞 − 𝑐𝐸)(𝑐𝑞 − 𝑐𝐸)𝑇𝑘
𝑞=1                                                 (3.10) 

Here, 𝑐𝑞 is a set of points in cluster 𝑞, and 𝑥 is specifically the centre of the cluster. 𝑐𝐸 is the centre 

of clusters with 𝑛𝑞 points in them.  

The maximum value of 𝑠 is used to select an ideal group of clusters using this index from the pool 

of generated clusters. 
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Algorithm 3.2: Cluster Formation using Hypergraph Theory 

Input: Maximum number of vehicles: 𝑁, Each vehicle’s location: VehiLoc 

1. Choose the time t when there are the most vehicles 𝑁  

2. Form a hypergraph 𝐻 = ( 𝑉, ℰ, 𝑊) 

3. Determine the similarity matrix 𝐴 based on how close the vehicles are to one another 

in terms of distance  

       A square matrix of size 𝑁 × 𝑁 of similarity (adjacency matrix) as 𝐴 = ∑ 𝐴𝑖𝑗
𝑁
𝑖3,…..,𝑖𝑚=1  

4. A diagonal matrix 𝐷𝑖𝑔 ∈  ℝ𝑁×𝑁 is with 𝐷𝑖𝑔𝑖𝑖 = ∑ 𝐴𝑖𝑗
𝑁
𝑗=1 , and 𝐿 = 𝐷𝑖𝑔−1/2𝐴𝐷𝑖𝑔−1/2 

5. Then, 𝑘 dominant eigenvector of 𝐿 is computed as 𝑈 ∈ ℝ𝑁×𝑘 

6. Normalise each row of 𝑈̅ = 𝑈 

7. Run k-means on the rows of 𝑈̅ 

8. Obtain 𝐶𝑛𝑢𝑚 through k-means partition 𝑃𝑎𝑟 = {𝑉1, … … 𝑉𝑘} 

9. For each cluster 𝐶𝑛𝑢𝑚, calculate the Calinski–Harabasz (𝑠) criterion  

10. Find the optimal cluster 𝐶𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = [𝐶𝑛𝑢𝑚: ∀  max(𝑠 )]  

Output: The optimal set of clusters: 𝐶𝑜𝑝𝑡𝑖𝑚𝑎𝑙 

3.2.3 RSUs deployment  

The RSU is an integral part of the VANET. The VANET is a hierarchical architecture consisting of 

the main server, RSUs, and vehicles. RSU collects the data from the moving vehicles. The 

clustering of vehicles has been discussed in the context of RSU by many researchers as if the RSU 

has request congestion, then packet drop will increase. Therefore, the optimal number of RSUs has 

to be calculated so that maximum probable vehicles can be served without congestion. The optimal 

number of clusters has been calculated in the previous section. The RSU is placed at the centroid of 

the initial clusters using a hypergraph assuming the maximum vehicle density. This way, a 

minimum number of RSUs can cover the maximum number of vehicles in the area. The 

installation cost would also be lesser (this is not evaluated in the simulation).  Algorithm 3.3 

tabulates the steps in locating the centroid for the RSUs and their deployment. The vehicles in any 

cluster cannot be controlled due to the nature of clustering. Consequently, few vehicles, such as 
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three, can also lie in that precalculated cluster area. In such a case, the RSU is placed using a 

Gaussian probability distribution[89] as: 

                           𝑉𝑒ℎ𝑖~𝑁(𝜇, 𝜎2)                                                                 (3.11) 

The distribution is defined as the mean (μ = 0) and variance 𝜎 = 1.  

  𝑓(𝑉𝑒ℎ𝑖) =
1

𝜎√2𝜋
  𝑒−(𝑉𝑒ℎ𝑖−𝜇)2

/2𝜎2                                        (3.12) 

A network graph G = ( V, ℰ) amongst V vehicles’ connections with 𝜀 set of edges. The centrality 

matrix for a graph is the measure of its compactness [90]. The centrality determines the most 

visited vertex in a graph. For a vehicle 𝑣, it can be calculated as 

                      𝐶𝐵(𝑣) = ∑
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
𝑠≠𝑣≠𝑢∈𝑉                                                       (3.13) 

Here, 𝜎𝑠𝑡 is the total number of the shortest paths from node 𝑠 to node 𝑢, and 𝜎𝑠𝑡(𝑣) is the number 

of paths that pass through 𝑣. The vehicle with maximum centrality value is considered the cluster’s 

centre as in (line 10). This is the location where RSU is to be installed.  

Algorithm 3.3: RSU Deployment 

Input: Set of optimal clusters 𝐶𝑜𝑝𝑡𝑖𝑚𝑎𝑙 and number of vehicles in each cluster 

𝑉𝑒ℎ𝑖𝑛𝑢𝑚. 

1. For i=1: 𝐶𝑜𝑝𝑡𝑖𝑚𝑎𝑙 

2.         If  𝑉𝑒ℎ𝑖𝑛𝑢𝑚 ≤ 3  

3.              Select a vehicle based  𝑉𝑒ℎ𝑖~𝑁(0,1) shown in Equation (3.12) 

4.                            𝑅𝑆𝑈𝐿𝑜𝑐 = VehiLoc 

5.          Else 

6.               Construct an urban road map with a  graph 𝐺 = ( 𝑉, ℰ)  

7.               Edge is 𝑒𝑖𝑗𝜖 ℰ =𝑑𝑖𝑗   based on the distance amongst vehicles 

8.               Obtain a  connection matrix  

                                          𝑐𝑖𝑗 = {
1                    𝑖𝑓 𝑑𝑖𝑗  

≤  𝑅𝑣𝑒ℎ𝑖

0                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

9.                Evaluate the betweenness centrality 𝐶𝐵 by using Equation (3.13) 

10.                         𝑉𝑒ℎ𝑖 = max (𝐶𝐵) 

11.           𝑅𝑆𝑈𝐿𝑜𝑐 = VehiLoc 

12.  End 

13. End 

Output: RSU location 𝑅𝑆𝑈𝐿𝑜𝑐. 



HyperGraph Clustering Model (HGCM) in VANET                                              Mays. K. J. Alsabah 

 

63 | P a g e  
 

 

3.3 CH Selection and Cluster Maintenance for HGCM   

3.3.1 CH Selection  

The vehicle node 𝑣𝑖 in the network at time 𝑡 has features 𝑓𝑖(𝑡) = {𝑠, 𝑝,⃗⃗⃗ ⃗ 𝑎, θ, 𝑉𝑒ℎ𝑖𝐼𝐷, 𝜂}, where s⃗ is 

the vehicle speed, 𝑝 ⃗⃗⃗ ⃗ is the location of each vehicle in both coordinates (𝑥, 𝑦), 𝑎 is the acceleration, 

and θ is the vehicle direction. Each vehicle is assigned a unique identity 𝑉𝑒ℎ𝑖𝐼𝐷, and 𝜂 refers to the 

one-hop neighbours of vehicle node 𝑣𝑖. Out of these nodes, a vehicle is selected as the CH. In this 

proposed, the CH selection metric 𝑚𝑖(𝑡) is a collection of metrics { 𝜓𝑣𝑒ℎ𝑖, 𝜂, 𝔈, 𝓉}. The CH 

selection process is dependent upon the current CH selection metrics of each CM in the cluster. 

 𝜓𝑣𝑒ℎ𝑖 is the relative speed, η is the set of neighbours of vehicle 𝑣𝑖, 𝔈 is the eccentricity, and 𝓉 is 

the trust calculated via spectrum sensing. The selected CH should have a maximum of 

∑ 𝑚𝑖(𝑡)𝑖=1,2..𝑛  at any instant 𝑡. Given that the hypergraph network is the cooperative network, each 

vehicle’s feature is relative to every hyperedge linked to that hypernode [91].                               

 The novel contribution in CH selection parameters is the strength of the cooperative nature of 

the hypergraph. The use of deep learning in the calculation of the trust score of each vehicle is 

another novel contribution to the CH selection.  

All of the network's information is collected by the CH, sends it to the RSU and maintains the 

communication between the cluster vehicles and RSU. The stability of the CH will be higher if it 

will be in a communication link with the neighbour vehicles for a longer time.  

The definitions of each metric with the essential background are presented below. 

1) Relative Speed Score ( 𝝍𝒗𝒆𝒉𝒊) 

Definition 3: A vehicular node’s 𝑣𝑗  relative speed score  𝜓𝑣𝑒ℎ𝑖  is a score that either penalises or 

gives reward to a vehicle if it crosses a cluster’s average speed or aligns with the cluster. A high 

score of  𝜓𝑣𝑒ℎ𝑖 indicates a high probability of election.  

This parameter determines how close a vehicle’s speed is to its neighbour’s. The relative speed of 

each vehicle is calculated by differentiating its speed from the cluster’s average speed at any 

instant of time. The moving direction of the vehicles also comes into play this way. The more 

vehicles are moving in the same direction, the higher 𝜓𝑣𝑒ℎ𝑖 will be. The relative speed score is 
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evaluated as shown in Equation (3.14) [35]. The relative speed is compared with a threshold speed 

𝑆𝑡ℎ𝑟. If a vehicle is moving at higher speed than 𝑆𝑡ℎ𝑟, its  𝜓𝑣𝑒ℎ𝑖 gets penalised with δ; else, a 

reward of  δ is added to its score.   

[
 𝜓𝑣𝑒ℎ𝑖(𝑡 + 1) = 𝜓𝑣𝑒ℎ𝑖(𝑡) + 𝛿   ; |𝑉𝑣𝑒ℎ𝑖 −  𝑉𝑎𝑣𝑔|  ≤  𝑆𝑡ℎ𝑟

𝜓𝑣𝑒ℎ𝑖(𝑡 + 1) = 𝜓𝑣𝑒ℎ𝑖(𝑡) − 𝛿   ; |𝑉𝑣𝑒ℎ𝑖 −  𝑉𝑎𝑣𝑔| >  𝑆𝑡ℎ𝑟

                      (3.14)                                      

 

𝛿 and 𝑆𝑡ℎ𝑟 are 0.01 and 2.77 for this work, respectively. 

2) Neighbourhood Degree (𝜂) 

Definition 4: The connection status between the two vehicular nodes 𝑣𝑖 and 𝑣𝑗  at time 𝑡 in the 

cluster formed 𝐶𝑜𝑝𝑡𝑖𝑚𝑎𝑙 with vehicle density 𝑉𝑒ℎ𝑖𝑛𝑢𝑚 is defined as 

                        𝜂 = ∑ 𝑐𝑖𝑗
𝑉𝑒ℎ𝑖𝑛𝑢𝑚
𝑗=1 ; ∀ 1                                                           (3.15) 

High 𝜂 ensures that the CH will not be dynamic for a long time. The degree of neighbourhood 

determines the number of vehicles that are generally present in the area. The vehicles under the 

transmission range of OBU are considered neighbours. 𝑐𝑖𝑗 is 1 if the distance between two vehicles 

at the time stamp 𝑡 is less than or equal 𝑅𝑣𝑒ℎ𝑖 [92]. The transmission range and distance have an 

inverse relationship. That is, if two vehicles are close to each other, then a more reliable connection 

is bound. 

3) Eccentricity  (𝕰 ) 

Definition 5:  Let 𝐴 be a fundamental matrix. Then, an eigenvector 𝑈 > 0 exists, such that 

𝐴𝑈 = 𝜆1 𝑈, 𝜆1 > 0 is an eigenvalue of an immense magnitude of 𝐴, the eigenspace associated 

with 𝜆1 is one-dimensional, and 𝑈 is the only non-negative eigenvector of 𝐴. 𝔈 is the average of 

top 𝑘 eigenvalues of 𝐴 designed for ℋ = (V, ℰ, W). 

Due to the rapid movement of vehicles, communication links frequently fail in real-time. A 

requirement is placed for a progressive cluster model in order to maintain a link. Once the CH 

resigns or no longer meets the criteria to remain a CH, reclustering will typically become 

inevitable. The idea of eccentricity (𝔈) is introduced in order to provide stability. In this instance, 

spectral clustering is used to create an updated graph-based model [58]. A vehicular graph 
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topology is intended to be hypergraph ℋ = (𝑉, ℰ, 𝑊) with the usual procedure as defined in 

Section 3.2. The adjacency matrix 𝐴 is generated on the basis of the distance proximity amongst 

the vehicles present at each time instant 𝑡 for each cluster. The eigenvalues for a vehicle 𝑖 in each 

group are 𝜆𝑖, where 𝑖 = {1,2, … … 𝑉𝑒ℎ𝑖𝑛𝑢𝑚}. Lastly, 𝔈 is the mean/average eigenscore of each 

vehicle calculated as [58] 

                 𝔈 =  
1

| 𝑉𝑒ℎ𝑖𝑛𝑢𝑚|
  ∑ 𝜆𝑖𝜆𝑖 𝜖 𝑉𝑒ℎ𝑖𝑛𝑢𝑚                                               (3.16) 

The maximum value of 𝔈 ensures a stable CH selection designed in accordance with hypergraph 

theory. 

4) Trust Score  (𝓉) 

Definition 6: Through channel ℎ, the signal is received from the user, and the probability of 

detection is 1. Then, the user is primary (PU); else, it is a secondary user (SU).  

There might be some VIP and emergency cars on the vehicular network, which are regarded as the 

PUs of the communication spectrum in the network. Others are assigned as SUs. Every vehicle 

takes part in spectrum sensing. Given that the communication spectrum is limited, the cognitive 

spectrum sensing approach is used in the communication model [93]. Once the PU is detected in 

the network, the SU will have to vacate the spectrum for it. The SU following this protocol gains 

the trust, and the trust score 𝓉 is increased. The model of cognitive spectrum sensing is introduced 

in this work to elect the most trustworthy vehicle to serve as the CH.  

By comparing the signal strength of nearby cars with the probabilistic threshold value, the SU 

detects the existence of the PU. The test statistic for the detected energy signal might be given in a 

complicated form as 

 𝑇(𝑌) =  
1

2𝑁
∑ |𝑌𝑖

𝑟𝑒 + 𝑌𝑖
𝑖𝑚|

2𝑁
𝑖=1                                                  (3.17) 

where 𝑇(𝑌) represents the test results for any vehicle. Using the chi-square probability distribution 

function, this random variable 𝑇(𝑌) can be approximated as  

𝑃𝑑(𝜀, 𝑡) =  ℚ ((
𝜀

𝜎𝑢
2 − 𝛾 − 1) √

𝑡𝑓𝑠

2𝛾+1
)                                        (3.18) 
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The car is recognized as the PU if the probability of detection 𝑃𝑑 is higher than the threshold 𝜀 

[94]. 𝜀 is calculated by the inverse of this chi-pdf: 

ℚ−1(𝑃𝑑) = (
𝜀

𝜎𝑢
2 − 𝛾 − 1) √

𝑡𝑓𝑠

2𝛾+1
                                               (3.19) 

Here, ℚ(. ) is the complementary distribution function and is Gaussian in nature, i.e. 

 ℚ(𝑥) =  
1

√2𝜋
∫ 𝑒𝑥𝑝 (−

𝑡2

2
)𝑑𝑡

∞

𝑥
                                                   (3.20) 

The threshold value decides the accuracy of detection of the PU. In this work, we follow the 

concept of deep learning to detect the presence of PU. It has proposed the stack of deep learning 

layers with LSTM in the focus to factor down the signal features. Threshold value estimate is 

comprised of two distinct stages: data generation and deep learning model training.  

Data Generation 

To collect data, the spectrum sensing network is simulated with an ideal energy-sensing condition 

to generate the training data with various modulation schemes and random input data streams. 

Simulated modulations are BPSK, QPSK, 8-PSK and 16-PSK. With every simulation, the 

generated signals' energy is mapped with the results of the PU detection with a threshold value 

calculated using Equation (3.19). As a result, forty thousand samples are used to create a labeled 

dataset. The PU and non-PU labels are assigned to detected signals. 

LSTM Network Training 

The LSTM network is trained on the data to teach the decision based on sensed signal energy. The 

network is trained with the randomly sampled 90% data for training and 10% for the testing. Two 

biLSTM layers with forward and backward data sequencing are used which are connected with the 

fully connected layer. On training, the network is able to correctly classify the absence of any PU 

upto 89% whereas any PU is correctly detected upto 83.5%. 

The trained network is used to obtain the threshold value for 𝑃𝑑(𝜀, 𝑡) on the unknown signals. For 

every successful detection, the trust score (𝓉) is incremented. The higher 𝓉 is, the higher the 
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probability of a vehicle to be elected as CH will be. This trust score calculation scheme is 

portrayed in Figure 3.5. 

 

 

Figure 3.5 Adaptive Spectrum Sensing Model Using LSTM. 

The model is divided into three subparts: sensing block, training block and PU detection block. 

The energy signal database is collected by simulating the network in the ideal and Rayleigh noisy 

channel environment. The data are fed into the LSTM training block. After training, the detected 

energy signal is tested with the trained model, and the vehicle is assigned to the PU or SU. The true 

detection increases the trust score by 1. 
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Figure 3.6 The 𝐏𝐝 and 𝐏𝐟Using LSTM Method and Theoretical Analysis. 

A comparison of the ROC curve between the theoretical analysis of threshold calculation by 

Equation (3.19) as in [95] and the proposed LSTM-trained network is presented in Figure 3.6. The 

detection probability 𝑷𝒅 is high for a small value of 𝑷𝒇. The trained LSTM network performs 

better in a noisy environment, which means that it is efficient and can predict with appropriate 

accuracy. 

In Algorithm 3.4, the complete algorithm created for CH selection is displayed. All four 

parameters are summed and integrated to select a stable CH for a long period of time. The vehicles 

are firstly clustered using Algorithm 3.2. For all members at each cluster, the four parameters are 

found.   Then, 𝑪𝑯𝒔𝒄𝒐𝒓𝒆 is calculated to select the stable CH. 
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Algorithm 3.4: CH selection 

Input: Relative speed 𝑉𝑣𝑒ℎ𝑖 and location [𝑥, 𝑦]; 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑎𝑛𝑒𝑠 𝑖𝑛 𝑎 𝑚𝑎𝑝 (𝑛𝑜_𝑙𝑎𝑛𝑒); 𝑡𝑖𝑚𝑒_𝑠𝑝𝑎𝑛; Cluster member (CM);(𝑁) no. of 

clusters. 

1. For t=1:𝑡𝑖𝑚𝑒_𝑠𝑝𝑎𝑛 

2.         For 𝑖 = 1: 𝑁 

3.                For  j = 1: CM 

4.                         Calculate  𝜓𝑣𝑒ℎ𝑖 from Equation (3.14)    

5.   Find the neighbouring vehicles and calculate 𝜂 by using a connection matrix 

Equation (3.15) 

6.  Calculate  the  maximum  eigenvalues  𝜆;  

7. Then obtain 𝔈 𝑏𝑦 using Equation (3.16) 

8.  Signals' energy is mapped with the results of the PU detection with a threshold 

value calculated using Equation (3.17) and Equation (3.19). 

9.       Calculate 𝓉 score using the LSTM trained network based on sensed signal energy. 

10.            Find 𝐶𝐻𝑠𝑐𝑜𝑟𝑒 for each CM 

11.                            𝐶𝐻𝑠𝑐𝑜𝑟𝑒 =   𝜓𝑣𝑒ℎ𝑖 +  𝜂 +  𝔈 + 𝓉 

12.                 End 

13.                          𝐶𝐻𝑗 = Max ∑ 𝐶𝐻𝑠𝑐𝑜𝑟𝑒
𝑘
𝑗=1  ∀𝑗 

14.          End 

15. End 

Output: CH Vehicle 

 

 

3.3.2 HGCM Maintenance Phase 

The reduction of communication overhead after the selection of CH is also an important part of the 

designed algorithm. The cluster maintenance process ensures strong connectivity and stable link 

lifetime through CH. In this work, the joining of a new vehicle in a cluster and leaving of any CM 

are considered vital for the cluster maintenance phase. HGCM is designed with the parameters that 

ingest the restructuration of the topology and vehicular speed. The CH score provides a significant 
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contribution to capturing the information of vehicle movement. The maintenance does not deal 

with the networking. It is designed to maintain a smooth transition of vehicles in and out over time. 

1) Cluster Enrolment   

A small number of vehicles in a cluster with a large transmission range will lead to inconsiderably 

reliable networking. The selected CH starts its task by sending the polling signals and if it receives 

any signal in return within a stipulated time period time_span with the condition that 

𝑑𝑖𝑠𝑡_(𝑣𝑒ℎ𝑖, 𝐶𝐻)< 𝑅𝐶𝐻. A new vehicle is assigned to that cluster (each formed under RSU) and 

becomes CM of that particular cluster. CH will update the local database and the list of vehicles in 

RSU. The arrival of a new vehicle in a cluster can also trigger CH reselection in the worst-case 

scenario. The algorithm designed is thus coined to formulate CH score based on four factors 

{ 𝜓𝑣𝑒ℎ𝑖, 𝜂, 𝓉, 𝔈}; with this, the stability of CH is ensured. 

2) Cluster Leaving  

CMs can leave any cluster at any moment of time. The reasons for this could be lane change or exit 

from a road, the ever-changing dynamics of vehicles and the topology that affects the number of 

CMs. Therefore, a frequent polling of signals is done between the established members and CH. If 

a CM does not reply within the speculated period time_span, then the CM is considered to be 

disconnected and leave the cluster. The CH removes the recorded vehicle, and an updated list is 

appended at the RSU. The complete algorithm designed for cluster maintenance is shown in 

Algorithm 3.5.  
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Algorithm 3.5: Cluster Maintenance 

Input: CH; Cluster C; No. of vehicles 𝑁; CH transmission range 𝑅𝐶𝐻     

1. For t=1:𝑡𝑖𝑚𝑒_𝑠𝑝𝑎𝑛 

2.      For 𝑗 = 1: 𝐶 

3.         For 𝑖 = 1: 𝑁 

4.                       IF   𝑑𝑖𝑠𝑡_(𝑣𝑒ℎ𝑖, 𝐶𝐻)< 𝑅𝐶𝐻  

5.                            CM=CM+1; 

6.    CH <  𝐴𝑑𝑑𝑠 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 (𝑣𝑒ℎ𝑖) 𝑖𝑛 𝑡ℎ𝑒 𝑅𝑆𝑈 𝐿𝑖𝑠𝑡 & 𝐿𝑜𝑐𝑎𝑙 𝐿𝑖𝑠𝑡 > 

7.                       Else 

8.                            CM=CM-1    

9.    CH <  𝑅𝑒𝑚𝑜𝑣𝑒𝑠 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 (𝑣𝑒ℎ𝑖) 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑅𝑆𝑈 𝐿𝑖𝑠𝑡 & 𝐿𝑜𝑐𝑎𝑙 𝐿𝑖𝑠𝑡 > 

10.                      End  

11.             End 

12.      End  

13. End 

Output: Cluster Update 

3.3.3 Time Complexity of the HGCM Scheme 

Cluster formation, RSU deployment and CH selection are the key components of the proposed 

scheme. Accordingly, the total time complexity for our HGCM is expressed as 

𝑂𝑇𝑂𝑇 = 𝑂𝐶𝐹+𝑂𝑅𝑆𝑈 + 𝑂𝐶𝐻                                                         (3.21) 

where 𝑂𝐶𝐹 is the cluster formation's time complexity, 𝑂𝑅𝑆𝑈 is for RSU deployment, and 𝑂𝐶𝐻 is 

for CH selection. The cluster is generated by hypergraph partitioning. The major steps involved 

are as follows: (1) hypergraph construction= (𝑉, 𝐸, 𝑊); (2) Laplacian construction; (3) 

eigenproblem solving; (4) applying k-means to 𝑈̅. 

When constructing the nearest neighbour graph in a hypergraph with pairwise similarity, the cost 

is 𝑂(𝑁2)𝑑 , given that it requires 𝑑-dimensional similarity computation for each vertex pair, 

where 𝑁 represents the largest number of cars in the study' worst-case scenario with m 

hyperedges. The sparsity of the adjacency matrix A has a direct relationship with the Laplacian 

construction step through the non-zero elements 𝑁𝑁𝑍 (or the number of vehicles in our case). 
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𝐿 = 𝑂(𝑁𝑁𝑍(𝐴2)), the eigen complexity is 𝐸𝐶 = 𝑂(𝑁3), and the last is the k-means complexity 

which is dependent on 𝑂𝐶𝑜𝑝𝑡𝑖𝑚𝑎𝑙
= 𝑂(𝜏𝑁𝐶𝑛𝑢𝑚), where 𝜏 is the number of iterations. 

𝑂𝐶𝐹 =  𝑂(𝑁2)𝑑 + 𝑂(𝑁𝑁𝑍(𝐴2)) + 𝑂(𝑁3) + 𝑂(𝜏𝑁𝐶𝑛𝑢𝑚)                   (3.22) 

This can be reduced after removing the terms of less computational power as 

𝑂𝐶𝐹 =  𝑂(𝑁2)𝑑 + 𝑂(𝑁3)                                                          (3.23) 

The RSU deployment is done using a graph, so the computational complexity is  

𝑂𝑅𝑆𝑈 = 𝑂(𝑁2)𝑑                                                                      (3.24) 

In this proposed, the CH selection metric 𝑚𝑖(𝑡) is a collection of metrics { ψvehi, η, 𝔈, 𝓉}. ψvehi 

is the relative speed, η is the set of neighbours of vehicle 𝑣𝑖, 𝔈 is the eccentricity, and 𝓉 is the 

trust calculated via spectrum sensing 

𝑂𝐶𝐻 = 𝑂 ψvehi
+ 𝑂η + 𝑂 𝔈 + 𝑂𝓉                                               (3.25)  

The relative speed is a simple threshold function done on the basis of the vehicle speed; thus, 

𝑂 ψvehi
= 𝑂(𝑁)                                                                      (3.26) 

The next is the neighbourhood, which is a function of the 𝑐𝑖𝑗 affinity matrix for nearby vehicles. 

𝑂η = 𝑂 (log 𝑁2)                                                                 (3.27) 

Utilizing spectral clustering techniques which include the affinity matrix and eigenvalue 

decomposition, the eccentricity is computed. The entire spectral clustering complexity is 

𝑂 𝔈 = 𝑂(𝑁2)𝑑 + 𝑂 (𝑁3)                                                      (3.28) 

The last factor is trust LSTM, which plays the primary role in this for spectrum sensing; The 

LSTM's theoretical time complexity is provided as 

𝑂𝐿𝑆𝑇𝑀 = 𝑂(4𝐼𝐻 + 4𝐻2 + 3𝐻 + 𝐻𝐾)                                         (3.29) 
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where 𝐼 represents the number of inputs, 𝐾 represents the number of outputs, and 𝐻 represents 

the number of hidden layers. In this study, because the model is trained only once for a given 

vehicle signal, the LSTM detects whether the vehicle is a primary or secondary user through 

spectrum sensing. Thus, the time complexity condenses to 

𝑂𝐿𝑆𝑇𝑀 = 𝑂(4𝐻2)                                                                (3.30) 

Then, the complete time complexity is reduced to moving all the terms with less complexity than 

cubic and quadratic terms, as shown below: 

𝑂𝐶𝐻 =  𝑂 (log 𝑁2) +  𝑂(𝑁3)                                               (3.31) 

The overall complexity is primarily dependent on the hypergraph, i.e. 

𝑂𝑇𝑂𝑇 = 2 𝑂(𝑁2)𝑑 + 𝑂 (log 𝑁2) +  2𝑂 (𝑁3)                         (3.32) 

3.4 Simulation and Performance Evaluation 

This section describes the detailed background of the simulation tools and the various evaluation 

parameters utilised. The results’ discussion is carried out in three phases: the effect of different 

traffic densities on the stability of the designed HGCM in a comparison with individual metric, 

State-of-the-Art Comparison, and the effect of different traffic densities on the routing 

performance. 

3.4.1 Simulation Tools Used 

The simulation is implemented using MATLAB (R2018b), with the processor Intel ® Core TM i7, 

1.98 GHz, (SUMO 1.7.0) [96]  and (TraCI) [97]. SUMO is an open-source microscopic road traffic 

simulator licensed under the General Public License. It was created through cooperation between 

the Institute of Transportation Systems at the German Aerospace Center (DLR), the Centre for 

Applied Informatics, and Cologne (ZAIK). TraCI is an API developed to interface SUMO with 

other coding platforms, such as MATLAB, Python and Java. The complete network design and the 

routing performance for metrics, such as throughput and PD are evaluated in MATLAB. The area 

considered for the study is a crowded market area of Baghdad having the latitude =33.3573° S, 
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33.3730° N and longitude= 44.3960° W, 44.4190° E; it is extracted from OSM. Baghdad is the 

capital of Iraq and one of the largest cities in the Arab world, with massive population and a 

geographical area of 204 km
2
. Table 3.1 presents a summary of the traffic environment parameters. 

These parameters are considered on the basis of extensive literature survey. Moreover, the values 

are minutely crafted to portray a real urban scenario with congestion, many crossroads and a large 

number of vehicles during peak hours [53]. 

Table 3.1  Simulation Parameters. 

Parameter  Value  

Scenario Urban 

Vehicle density 100–1000 

Lanes 458 lanes 

Vehicle average speed 10.71 m/s  

𝑅𝑅𝑆𝑈 350 m 

Maximum Simulation time (𝑡) 1500 s 

𝑅𝑣𝑒ℎ𝑖 200 m 

Length of vehicle  5 and 10 m 

Maximum vehicle speed 25 m/s 

 

The geographical region considered for the simulation is shown in Figure 3.7; it is a vast area with 

urban infrastructure. Algorithm 3.2 suggests the optimal number of clusters in that region, and 

RSUs are deployed using Algorithm 3.3. Further vehicle features 𝑓𝑖(𝑡) = {𝑠, 𝑝,⃗⃗⃗ ⃗ 𝑎, 𝜃, 𝑉𝑒ℎ𝑖𝐼𝐷 , 𝜂} are 

recorded for 1000 vehicles. The number of vehicles in the simulation area varies as in real-world 

scenarios. Twelve clusters are optimally selected using Algorithm 3.2. Different colours portray 

each cluster and vehicles in each cluster. The triangles (in black) are the different RSUs placed, 

which will serve as the cluster centre (providing auxiliary facilities), Figure 3.8. 
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Figure 3.7 Simulated Part of Baghdad Real Map in SUMO. 

 

 

 

Figure 3.8 Cluster Formation Along with RSU Deployment at an Instant with Maximum Vehicular 

Density. 
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3.4.2 Evaluation Metrics 

The designed HGCM is also tested in terms of routing performance. The communication amongst 

vehicles is modelled through the Rayleigh fading channel with BPSK modulation. Owing to the 

vehicles’ movement, the network is dynamic and fast, which introduces a Doppler effect. The 

effect is incorporated as the signal fades over time. The communication network parameters are 

listed in Table 3.2 [3]. 

Table 3.2 Integrated Network Parameters for IEEE 802.11p. 

Parameters Value 

Fading channel Rayleigh Channel 

Fading Parameter Filtered Gaussian noise 

Doppler shift 𝑉𝑠,𝑟/𝜆 

Sample rate 10 MHz 

FFT points number 32 

Subcarriers number 52+ D 

Number of data 

subcarriers 

52 

Number of pilot 

subcarriers 

4 

Cyclic prefix 16 

Modulation scheme BPSK 

Coding scheme ½ 

Available data rate 14Mbps 

Various metrics are computed to assess the performance and stability of our HGCM. These metrics 

are Cluster number, Cluster size, CH Lifetime, CM Lifetime, CH Change Rate, PD, and 

Throughput  [5], [98]. 

3.4.3 Results and Discussion 

The designed HGCM is analysed on a real map in an urban scenario where different densities of 

vehicles at various mobilities are infused into the network. The number of clusters produced 

throughout time affects algorithm efficiency as well. In comparison with roads, mobility is less of 

an issue in cities. CH is also more stable in an urban setting, where the vehicle density is higher, 
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but the mobility is lower. The results of the effect of different traffic densities on HGCM stability 

and on the routing performance are presented in this section. 

3.4.3.1 Effect of Different Traffic Densities on HGCM Stability 

The work by Maoli et al. that was presented in [82] opened up a way to present VANET as a 

hypergraph, Despite the fact that the authors only touched on that in the context of fog computing, 

they did not touch on the network performance metrics. 

The effectiveness of the designed algorithm was also gazed by the number of clusters formed over 

time. These numbers allow us to evaluate the quality of the formed clusters. Few clusters with 

vehicles having low mobility achieve efficient connection and stable clustering. On the contrary, 

more clusters eventually lead to high overhead and mergers. The average number of vehicles in a 

cluster represents the cluster size. The larger the cluster size is, the higher the clustering efficiency 

will be. Figure 3.9, shows the average number of vehicles in a cluster and the number of clusters 

generated at different vehicular densities for our HGCM.  

 

Figure 3.9 Av. Number of Vehicles in a Cluster and Cluster number of HGCM at Different Densities. 
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In HGCM, four and 12 clusters are generated with an average of 25 and 210 vehicles in a cluster at 

low and high traffic, respectively. 

For spectral clustering, this study employs the eigenvalues derived using VANET’s hypergraph 

presentation. The idea is motivated by the connectivity graph eigenvalues in [58] and [70]. Both 

works in [58]and [70]were designed for the highway scenario, whereas our work is designed for 

the urban environment. The eccentricity parameter in our work is inspired by the connectivity-

based CH selection in [58]. A high connectivity with vehicles represents that dense traffic and 

maximum CH can be connected with the maximum number of vehicles. Eccentricity is a positional 

parameter that can be correlated with the connectivity issue. In a graph network, the central point 

has the highest connectivity, as does in the hypergraph. The neighbourhood degree is another 

connectivity parameter. In CH selection, a relative vehicle speed denotes uniform cluster 

generation. The CH stability using these three parameters { 𝝍𝒗𝒆𝒉𝒊, 𝜼, 𝕰} is evaluated on different 

vehicle densities in the same network and represented in Figure 3.10. Given that the vehicle 

deployment and movement are random and near to a real environment in SUMO, { 𝝍𝒗𝒆𝒉𝒊, 𝜼, 𝕰} 

parameters are not able to conclude any concrete pattern. We hereby use a nontrivial CH selection 

parameter, i.e. trust score 𝓽. The trust score 𝓽, along with the remaining three CH selection 

parameters, improves CH stability. The novel set of CH selection parameters significantly 

improves the CH stability by 20% at all vehicle densities as shown in Figure 3.10. 
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Figure 3.10 Average Stability of CH for HGCM with and without Trust Factor. 

Regardless of the non-uniform pattern in improving stability by the proposed set of parameters, the 

novel contribution shows a constant improvement compared with each parameter, as shown in 

Figure 3.11. The method designed using eccentricity only provides satisfactory stability compared 

with the others. This is because the network has a dynamic structure that is perfectly emulated 

utilising the hypergraph concept. By contrast, the rest of the parameters, such as the relative speed 

and neighbours, could not trace the stability with increasing vehicle densities. The contribution of 

each at an individual level is low, but the stability provided is best when they are combined 

{ 𝝍𝒗𝒆𝒉𝒊, 𝜼, 𝕰, 𝓽}. 
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Figure 3.11 Stability of CH at Different Vehicle Densities. 

The efficient cluster generation in the proposed scheme leads to enhanced CH stability. The CH 

stability has already been validated in Figure 3.10 and 3.11. The proposed HGCM with the four 

CH selection parameters achieves 72% and 53% of stability at low and high traffic density, 

respectively. 

The CH achieves enhanced stability, as evaluated in Figure 3.11. However, other vehicles in the 

cluster are marked as CMs. The increased lifetime of CMs indicates efficient clustering by using a 

hypergraph. In the case of non-uniform clustering, a CM leaves clusters frequently and joins 

others. Figure 3.12 presents a comparison of CM lifetime of our proposed HGCM. The HGCM 

scheme gains the highest lifetime compared with its counterparts, although the traffic congestion 

with the increase in vehicle’ density imposes performance degradation. Nevertheless, it can be 

ignored because for a 10-fold increase in traffic from 100 vehicles to 1000 vehicles in the network, 

the CM lifetime decreases to 4.2% only. 
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Figure 3.12 CM lifetime at Different Vehicle Densities. 

Also, the lower change rate of the CH, the more stable the cluster structure. From Figure 3.13 we 

can see, that the CH change rate is the lowest due to the hypergraph spectral clustered network 

with the CH selected using the cumulative multimetric { 𝜓𝑣𝑒ℎ𝑖, 𝜂, 𝔈, 𝓉}. Our proposed achieve 0.2 

and 0.34 /s of the change rate of the CH at low and high traffic, respectively.   

The overhead caused by the CH's frequent switching from one vehicle to another is decreased by 

the cumulative multimeric. Thus, it improves CH stability and CM lifetime and reduces CH change 

rate in a comparison with individual metrics. 



HyperGraph Clustering Model (HGCM) in VANET                                              Mays. K. J. Alsabah 

 

82 | P a g e  
 

 

Figure 3.13 CH Change Rate at Different Vehicle Densities. 

3.4.3.2 State-of-the-Art Comparison 

Figure 3.14 shows a graph that plots the CH stability for different vehicle densities. The CH 

stability decreases with the increase of traffic density. On the same network conditions listed in 

Tables 3.1 and 3.2, the CH stability is also evaluated using the algorithms in articles [58], and [35], 

with the same vehicle properties recorded from SUMO as for the proposed work. In Figure 3.14, 

CVoEG [58] seems to select a lesser durable CH than the proposed HGCM, followed by the 

method proposed by Arkian et al. [35]. The reason is that the CH selection in Arkian et al.’s 

method [35] is based on vehicle speed. As we have mentioned previously, the speed metric is lost 

in an urban scenario when there is immense congestion. Hence, this proposed method achieves the 

lowest stability. HGCM achieves good CH stability in comparison with other algorithms due to the 

effectiveness of hypergraph theory and the novel set of CH selection parameters. Our HGCM 

succeeds in achieving more than 53% of CH stability from the total time at all vehicle densities. 

Thus, the presentation of VANET as a hypergraph with its eigenvalues improves the CH stability. 
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Figure 3.14 Stability of CH at Different Vehicle Densities. 

3.4.3.3 Effect of Different Traffic Densities on Routing Performance 

The stable CH improves the routing parameters, such as PD and throughput. These parameters are 

distance dependent. The minimum distance travelled by the packet leads to low PD and high 

throughput. All CMs should be one hop away from the CH. In an efficient cluster, the hop distance 

would be minimal.  In the work presented in this chapter, HGCM divides the network into 12 

efficient clusters, which results in an average hop distance of 150 m for 1000 vehicles. By contrast, 

it is 260 and 330 m for CVoEG [58], and the method proposed by Arkian et al. [35], respectively. 

Figure 3.15 shows the hop distance versus vehicle density curves on the right-hand y-axis and PD 

versus vehicle density on the left-hand y-axis. The maximum delay is witnessed in the method 

proposed by Arkian et al. [35] because it has a maximum hop distance. The location of the CH in 

the method proposed by Arkian et al. [35] is random, and it does not guarantee the centrality of CH 

while the CH location in CVoEG. [58] is chosen based on the graph centrality.  PD is low for a 

small average hop distance. With the increase in vehicle densities, the average hop distance 

increases and so is the PD. This finding validates that HGCM clustering shows better performance 



HyperGraph Clustering Model (HGCM) in VANET                                              Mays. K. J. Alsabah 

 

84 | P a g e  
 

for a sparse network, which aligns with the general convention that a crowded area increases PD. 

In sum, our HGCM reduces the PD by approximately 41% and 48% compared with the methods of 

CVoEG [58] and Arkian et al. [35], respectively, at high traffic.  

 

Figure 3.15 Analysis of PD and Hop Distance at Different Vehicle Densities. 

Throughput depends on the number of packets received in a small span. The minimum PD 

increases the throughput for the proposed HGCM scheme irrespective of the number of vehicles. 

Figure 3.16 shows the throughput curves. The hypergraph network presentation and novel set of 

CH selection help achieve 460 kb/s throughput compared with 330, and 310 kb/s in other works at 

a density of 1000 vehicles. The proposed scheme helps achieve consistently improved throughput 

performance by approximately 39% and 48% compared with the methods of CVoEG and Arkian 

et al. [35], respectively, for high traffic. 
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Figure 3.16 Throughput at Different Vehicle Densities. 

3.5 Conclusion  

We have developed a novel cluster generation and maintenance strategy in this chapter. The CH is 

chosen based on a combination of four indicators that help maintain the stability of the dynamic 

network. A changing structure and the frequent connection and disconnection of communication 

links amongst vehicles are modelled in an evolving hypergraph formulation of VANET. Spectral 

clustering creates the ideal number of groups on the basis of the density of vehicles. Each cluster 

has a single RSU at its centre. Relative velocity score, eccentricity, neighbourhood degree and trust 

score are all recommended in this study for finding the most stable CH in each cluster. Trust metric 

with deep learning spectrum sensing has been introduced for CH selection. Deep learning-trained 

spectrum sensing is used as a model for trust calculation. LSTM layers are used to identify the 

primary vehicle in both noiseless and noisy environments. A high trust score is awarded to the 

vehicle which vacates the spectrum in the sensing of the primary vehicle. The proposed HGCM is 

tested for various vehicle densities in a real area in Iraq’s capital, Baghdad. Compared with 

individual measures and other techniques, our cumulative approach significantly improves CH 
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stability. The addition of the trust element results in 20% gain in average CH stability over the 

combined performance of three existing measures (i.e. relative speed, eccentricity and 

neighbourhood). A one-hop network configuration is used to evaluate the approach for different 

integrated network metrics, including packet latency and throughput. The average packet distance 

travelled by the proposed method is 150 m with a delay of 0.2 s, whereas the other comparative 

algorithms under the same network conditions report a PD of 0.38 s for approximately 330 m 

according to the PD analysis for the worst-case scenario (i.e. 1000 vehicles). Therefore, HGCM 

has the lowest PD whilst still allowing for the shortest possible hop distance. In addition, PD 

directly influences throughput; hence, HGCM has the maximum throughput compared with other 

methods. 

In the next chapter, we introduce a new proposed scheme based on improving the hypergraph 

spectral clustering algorithm by using the Eigen-trick method in the cluster formation phase. The 

Eigen-trick is used to calculate the modified Laplacian value in the TTM to improve the clustering. 

It improves the clustering efficiency by using higher-order information in eigenvalues. Four 

different parameters neighbourhood, eccentricity, relative speed and the key attribute to estimate 

the time to leave are extracted from each vehicle. The relational analysis of these four CH selection 

attributes is attempted with Grey Relational Analysis (GRA). The GRA is used to select a most 

stable CH, through which strong connectivity and stable link lifetime are maintained. There is an 

evident change in stability with the incorporation of junction information and reactive speed 

variation. Our proposed is named as an Eigen trick-based Hypergraph Stable Clustering (EtHgSC). 
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EtHgSC: Eigen trick-based Hypergraph Stable 
Clustering in VANET 
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4.1 Introduction  

For unifying many interactions between items, a hypergraph is frequently employed. Spectral 

clustering is one of the best methods for dividing those objects (vertices) into distinct 

communities [99]. In the first proposed in Chapter 3, the hypergraph spectral clustering has been 

used to cluster the vehicles in the cluster formation phase. The hypergraph partitioning through 

the TTM method has been proposed.  

This chapter presents the Eigen trick-based Hypergraph Stable Clustering model (EtHgSC), 

which has a two-fold scheme for stable clustering. In the first part of the proposed scheme, the 

cluster generation is handled using an improved hypergraph-based spectral clustering algorithm 

using the Eigen-trick method. The Eigen-trick is used to calculate the modified Laplacian value 

in the TTM to improve the clustering. Although the TTM was developed to partition the 

hypergraph into the lower non-decomposable graphs, the information loss can be minimised 

further with the help of the Eigen-trick in TTM hypergraph partitioning. 

‘‘Eigen-trick” method is used to partition both vertices and hyperedges, this offers a method for 

lessening the clustering's computational complexity. The Eigen-trick improves the clustering 

efficiency by using higher-order information in eigenvalues. It considers the transformable 

connection between the vertex Laplacian and the hyperedge Laplacian, which can speed up the 

solution of eigenproblems. During this time, the partition for vertices and hyperedges are both 

obtained simultaneously [100].  

The CH is chosen in the second part taking into account the requirements for keeping a stable 

connection with most neighbours. In addition to relative speed, neighbouring degree, and 

eccentricity that are used to select the CH, the vehicle time to leave estimation is introduced to 

increase the clustering stability. The grey relational analysis model is used to find each vehicle’s 

score. The vehicle with the highest score is selected as the CH for each cluster at each instant of 

time. The contributions of this chapter are listed as follows: 
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 The hypergraph-based spectral clustering algorithm is introduced for cluster formation, 

and the Laplacian value of the TTM is modified using the Eigen-trick method. It 

considers the transformable connection between the vertex Laplacian 𝐿𝑣 and the hyperedge 

Laplacian 𝐿𝑒, which can speed up the solution of eigenproblems without losing 

information. 

 The fast-moving vehicle may leave the cluster at any time and go out of the CH’s 

transmission range. In that case, the packet drop would be higher. It is better to know the 

leaving time of the vehicle in the cluster. Time to leave (𝑇𝑙𝑒𝑎𝑣𝑒) is an important parameter 

used to select the stable CH.   

 A vehicle may change its direction, so estimating the next position of the vehicle 

beforehand is necessary to know. Thus, the predicted vehicle direction at the next instant 

is calculated with the help of the predicted vehicle position by the Predictive directional 

Greedy Routing Protocol (PGRP). It helps to select the lane and its length to get the 

necessary estimated time to leave 𝑇′𝑙𝑒𝑎𝑣𝑒. This parameter reduces the frequent cluster 

breakage at junctions. 

 A set of CH selection parameters to deal with the vehicle's abrupt lane change is 

proposed, which includes relative speed, neighbouring degree, eccentricity, and 𝑇′𝑙𝑒𝑎𝑣𝑒.  

 A relational analysis is developed using Grey Relational Analysis (GRA) between four 

CH selection parameters instead of knowledge-based weightage. By using this scheme, 

strong connectivity and a stable link lifetime are obtained.    

4.2 EtHgSC Proposed Model 

In this chapter, a new clustering approach for a VANET structure in an urban scenario is 

presented. The proposed approach (EtHgSC) is divided into two parts: cluster generation using 

the improved hypergraph spectral clustering method and CH selection.CH stability is governed 

by using four factors, inclusive of relative speed, nieghbouring degree, eccentricity, and vehicle’s 

time to leave with the estimated next vehicle’s position. These two parts are explained in this 

section.  
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Figure 4.1 Proposed Model. 

4.2.1 Cluster Generation  

In spectral clustering, the most common criterion method is the radio cut method. For a set of 

clusters 𝑉1, 𝑉2, . . . , 𝑉𝑘 satisfying 𝑉1 ∩. . .∩ 𝑉𝑘  = ∅ and 𝑉1 ∪. . .∪ 𝑉𝑘  =  𝑉. And as we mentioned 

before, 𝐿 is a spectral clustering major tool.  

Weighted hypergraph TTM clustering has been proposed to use for spectral clustering of vehicles. 

It is called TTM because the hypergraph partition is equivalent to tensor decomposition into a 

lower rank [86]. Although the TTM is developed further to partition the hypergraph into the lower 

non-decomposable graphs, the information loss can be minimised further with the help of the 

Eigen-trick method in TTM hypergraph partitioning. Weighted hypergraph TTM to partition with 

Eigen-trick for the large-scale VANET for clustering is proposed in this chapter. 𝐿 in TTM is 

modified by the use of the Eigen-trick method. In this method, the eigenvectors of vertex 

Laplacian are computed from the corresponding eigenvectors of hyperedge Laplacian. Figure 4.2 
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depicts the proposed improvement in the hypergraph using the Eigen-trick method. In the weighted 

hypergraph ℋ = (𝑉, ℰ, 𝑊), the problem is partitioning 𝑉 into k disjoint sets (𝑉1, … … 𝑉𝑘).  

 

                                    a. Traditional                                                  b. Eigen-trick 

Figure 4.2 Obtaining 𝑈𝑣 using a. Traditional Hypergraph and b. Hypergraph with the Eigen-trick method. 

The following are the steps for partitioning the hypergraph with the modified TTM using the 

Eigen-trick method:  

1. For spectral clustering, the defined adjacency matrix is taken into account. It is defined here for 

the tensor (order m), and it is calculated using Equation (3.3) in Chapter 3. 

                                   𝐴𝑖1,𝑖2,……𝑖𝑚
= {

 𝑤{𝑖1,𝑖2……..𝑖𝑚}     𝑖𝑓 𝑖1,𝑖2,………,𝑖𝑚 𝑎𝑟𝑒 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 

0                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Also, the incidence matrix (𝐼) is defined, 𝐼 ∈  ℝ𝑁×𝑚. It represents the connection between vertices 

and edges. 𝑖(𝑣, 𝑒) = 1, if there is a connection between a vertex 𝑣 and an edge 𝑒, 

otherwise 𝑖(𝑣, 𝑒) = 0 [100]. 

2.  The degree matrix (diagonal matrix) for vertices  𝐷𝑖𝑔𝑣 ∈  ℝ𝑁×𝑁 , and for edges 𝐷𝑖𝑔𝑒 ∈  ℝ𝑚×𝑚 

are obtained, where deg (𝑣) = ∑ 𝑤𝑒𝑒∈𝐸  and deg(𝑒) = ∑  𝑖(𝑣, 𝑒)𝑣∈𝑉 .           

In our work, the weighted incidence matrix is also used, it is calculated as: 

                                 𝑖(𝑣, 𝑒) = {
𝑤𝑒               𝑖𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑
 0                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                       (4.1)                                                  

3. In actuality, there is a link between the symmetry of 𝐿𝑣 and 𝐿𝑒. In ‘‘Eigen-trick”, an 

interesting attribute of two Laplacians is that the k trailing eigenvectors of vertex Laplacian 

𝑈𝑣 ∈  ℝ𝑁×𝑘can be computed from the corresponding eigenvectors of hyperedge Laplacian 

𝑈𝑒 ∈  ℝ𝑚×𝑘 and vice versa. 𝑈𝑒 = 𝑒𝑖𝑔( 𝐿𝑒  ). The hyperedge Laplacian 𝐿𝑒 is calculated as, 

𝐿𝑒 ∈  ℝ𝑚×𝑚 [100]. 

𝐿𝑒=𝐷𝑖𝑔𝑒
−1/2

𝑊1/2 𝐼𝑇 𝐷𝑖𝑔𝑣
−1𝐼 𝑊1/2𝐷𝑖𝑔𝑒

−1/2
                                    (4.2) 

4. Obtained the 𝑈𝑣  ∈ ℝ𝑁×𝑘 from the hyperadge eigenvectors 𝑈𝑒 

𝑈𝑣 = 𝐷𝑖𝑔𝑣

−
1

2 𝐼 𝐷𝑖𝑔𝑒
−

1

2  𝑊1/2𝑈𝑒                                             (4.3) 

5. View each row of 𝑉 as a vector for a node, and cluster the 𝑁 nodes into 𝑘 clusters 

(𝑉1, 𝑉2, . . . , 𝑉𝑘) through k-means clustering. K-means clustering is applied on the normalized 

eigenvectors of vertex Laplacian Uv
̅̅̅̅ . 

6. The greatest value of the 𝑠 index is used to select an ideal group of clusters from the pool of 

generated clusters. 𝐶𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = [𝐶𝑛𝑢𝑚: ∀  max(𝑠 )]. The 𝑠 index is calculated using Equation (3.8) 

as in Chapter 3 

𝑠 =
𝑡𝑟(𝐵𝑘)

𝑡𝑟(𝑍𝑘)
 × 

𝑉𝑒ℎ𝑖𝑛𝑢𝑚 − 𝑘

𝑘 − 1
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The complete cluster formation algorithm is as in Algorithm 4.1. 

Algorithm 4.1: Cluster Formation using Eigen-trick method  

   Input:  Maximum number of vehicles: N , Each vehicle’s location : VehiLoc 

1. Choose the time 𝑡 when there are the most vehicles N 

2. Form a  hypergraph ℍ = ( V, ℰ, W) 

3. Determine the similarity matrix A based on how close the vehicles are to one another in 

terms of distance  

    A square matrix of size A ∈ ℝN×N  of similarity (adjacency matrix)  as 𝐴 = ∑ Aij
N
i3,…..,im=1  

    Incidence matrix I  is generated, its size of 𝐼 ∈ ℝN×m. 

4. A diagonal matrix for vehicles Digv ∈  ℝN×N , and for edges Dige ∈  ℝm×m 

5. Find the hyperage Laplacian Le=𝐷𝑖𝑔𝑒
−1/2

𝑊1/2 𝐼𝑇 𝐷𝑖𝑔𝑣
−1𝐼 𝑊1/2𝐷𝑖𝑔𝑒

−1/2
 

6.  k dominant eigenvector of Le are computed as Ue ∈ ℝm×k 

7. Computed the Uv  ∈ ℝN×k From the hyperadge eigenvectors Ue 

8. Normalize each row of Uv
̅̅̅̅ = Uv 

9. Run k-means on the rows of Uv
̅̅̅̅  

10. Obtain Cnum through k-means partition Par = {V1, … … Vk} 

11. For each cluster Cnum, calculate the Calinski–Harabasz (s) criterion  

12. Find the optimal cluster Coptimal = [Cnum: ∀  max(s )]  

     Output:  The optimal set of clusters : Coptimal, partitioning vehicles in clusters 
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VANET's weaknesses as well as network performance are enhanced by installing RSUs. The 

RSUs can successfully meet increased reliable communication, vehicular density, and decreased 

overhead delay, particularly in urban environments. When connecting to one or more vehicle 

clusters, the RSU functions as a gateway inside a router. It can also connect with RSUs using 

wireless or optical networks through an inclusive deployment [101]. Few studies in the literature 

addressed the RSU deployment, but the RSU is a part of VANET, and it is most necessary, 

which we have developed in our work. The actual VANET network needs RSU communication, 

too [102].  

So, after Algorithm 4.1 has produced the ideal set of clusters, the fetching location for RSU 

starts. Here, an evolving graph structure of the traffic is conceived using betweenness centrality 

as discussed in Algorithm 3.3 in Chapter 3. Now, the cluster generation phase for our scheme is 

completed. 

4.2.2 CH Selection Measures 

The next step is the selection of the CH. Continuous communication between the cluster and 

RSU, security, and upkeep of the routing path all fall under the purview of a CH. The stability of 

the CH in VANET is the main motive for designing any clustering algorithm.  In the real 

scenario of driving, the driving decisions are highly dependent upon the number of neighbouring 

vehicles, their locations and speeds. A vehicle moving at a uniform relative speed with the 

neighbours and in a central location in relation to other vehicles has a higher probability of 

getting selected as the CH. For example, in 3 lanes road scenario, the vehicle moving in the 

central lane is highly probable to be CH, as it has an equal communication probability with both 

sides’ vehicles. It is required that a vehicle should stay in the cluster for a longer period of time. 

The road junctions pose a challenge to this belief. So, in this proposed, we calculate the vehicle’s 

time to leave the cluster (𝑇𝑙𝑒𝑎𝑣𝑒). 𝑇𝑙𝑒𝑎𝑣𝑒 fails to estimate the road junctions. The unpredictable 

change in the direction of the vehicle at the junction can abruptly change the prediction. The new 

lane length may differ, so it is required to predict the vehicle’s next position beforehand. The 

proposed methodology for the CH selection is based on four parameters: relative speed, 

neighbouring degree, eccentricity, and vehicle’s time to leave with the estimated next vehicle’s 

position. These parameters are discussed as follows: 
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1. Relative Speed Score ( 𝝍𝒗𝒆𝒉𝒊)  

It is calculated using Equation (3.14) in Chapter 3. 

 𝜓𝑣𝑒ℎ𝑖(𝑡 + 1) = 𝜓𝑣𝑒ℎ𝑖(𝑡) + 𝛿   ; |𝑉𝑣𝑒ℎ𝑖 −  𝑉𝑎𝑣𝑔|  ≤  𝑆𝑡ℎ𝑟    

                                  𝜓𝑣𝑒ℎ𝑖(𝑡 + 1) = 𝜓𝑣𝑒ℎ𝑖(𝑡) − 𝛿   ; |𝑉𝑣𝑒ℎ𝑖 −  𝑉𝑎𝑣𝑔| >  𝑆𝑡ℎ𝑟 

2. Neighbouring Degree (𝜼)  

Neighbour degree is calculated using Equation (3.15) in Chapter 3. 

𝜂 = ∑ 𝑐𝑖𝑗

𝑉𝑒ℎ𝑖𝑛𝑢𝑚

𝑗=1

; ∀ 1 

 

3.  Eccentricity (𝕰 )  

The idea of eccentricity (𝔈) is introduced to guarantee stability. It is calculated using Equation 

(3.16) in Chapter 3. 

𝔈 =  
1

| 𝑉𝑒ℎ𝑖𝑛𝑢𝑚|
  ∑ 𝜆𝑖

𝜆𝑖 𝜖 𝑉𝑒ℎ𝑖𝑛𝑢𝑚 
 

 

4.  Vehicle’s Time to Leave Estimation (𝑻′
𝒍𝒆𝒂𝒗𝒆) 

All the above parameters are based on neighbourhood properties. The inclusion of a travel path is 

important to understand the complexity and speed of the travelling vehicle. The challenge of a 

vehicle’s unpredictable direction at the road junction is dealt with in this parameter. The vehicles 

transit fast and leave the cluster, which eventually leaves the node to go out of the CH's 

transmission range. This decreases the throughput of the model designed. To address this issue, 

the leaving time of the vehicle in the cluster will fetch the maximum time a node spends in the 

cluster.   

The time to leave is the amount of time needed for a vehicle to reach the last section of the lane. 

This parameter guarantees choosing a CH with enough time remaining to finish the lane, that 

causes it to head for a longer period. It is determined using the length of the lane 𝐿𝑡ℎ, the 
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distance covered by a vehicle on the road segment 𝑑𝑣𝑒ℎ𝑖, and vehicle speed at that time 𝑣𝑣𝑒ℎ𝑖. 

The time to leave (𝑇𝑙𝑒𝑎𝑣𝑒) is calculated as: 

 

𝑇𝑙𝑒𝑎𝑣𝑒 =
𝐿𝑡ℎ−𝑑𝑣𝑒ℎ𝑖

𝑣𝑣𝑒ℎ𝑖
                                                               (4.4) 

The possibility of the vehicle changing direction changes the lane length. Figure 4.3 can give a 

picture of the problem. 𝑇𝑙𝑒𝑎𝑣𝑒 fails to estimate the road junctions because the lane lengths may 

differ. So, the vehicle's estimated next position must be known ahead of time. It helps to select 

the lane and its length to get the necessary 𝑇′𝑙𝑒𝑎𝑣𝑒. 

 

Figure 4.3 Time to leave estimation problem illustration in absence of next position information. 

Estimated next vehicle position  

In the CH selection phase, this proposed has raised concerns about the CH stability at the 

junction, as the vehicle’s direction is unpredictable at the road junction. The changes in the 

direction of travel define the time span of the vehicle under the signal CH. Thus, the prediction 

of vehicle direction is an important parameter of analysis. The θ′𝑣𝑒ℎ𝑖 is the predicted direction of 

L1≠L2 
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the vehicle at the next instant. It is calculated with the help of the predicted vehicle position by 

the Predictive directional greedy routing protocol (PGRP). θ′𝑣𝑒ℎ𝑖 is calculated as:   

θ′𝑣𝑒ℎ𝑖 = tan−1(𝑌𝑣𝑒ℎ𝑖 − 𝑌′𝑣𝑒ℎ𝑖)/( 𝑋𝑣𝑒ℎ𝑖 −  𝑋′𝑣𝑒ℎ𝑖)                                            (4.5) 

Where 𝑌′𝑣𝑒ℎ𝑖 and 𝑋′𝑣𝑒ℎ𝑖are the predicted new position while 𝑌𝑣𝑒ℎ𝑖 and 𝑋𝑣𝑒ℎ𝑖 original coordinates 

of the vehicle. The routing algorithm is designed based on the parameter’s position, direction, 

and speed of each neighbour to choose the next forwarding node [103]. 

{
 𝑋′𝑣𝑒ℎ𝑖 = 𝑋𝑣𝑒ℎ𝑖 + 𝑑𝑣𝑒ℎ𝑖 cos θ𝑣𝑒ℎ𝑖 

𝑌′𝑣𝑒ℎ𝑖 = 𝑌𝑣𝑒ℎ𝑖 + 𝑑𝑣𝑒ℎ𝑖 sin θ𝑣𝑒ℎ𝑖
                                                   (4.6) 

Here, 𝑑𝑣𝑒ℎ𝑖 = 𝑣𝑣𝑒ℎ𝑖  𝑡𝑣𝑒ℎ𝑖. Equation (4.6) shows cases the change in the position of the vehicle 

from (𝑋𝑣𝑒ℎ𝑖, 𝑌𝑣𝑒ℎ𝑖) to (𝑋′𝑣𝑒ℎ𝑖, 𝑌′𝑣𝑒ℎ𝑖) when the vehicle is moving with a velocity of 𝑣𝑣𝑒ℎ𝑖, and the 

change in angle of θ𝑣𝑒ℎ𝑖 at time 𝑡𝑣𝑒ℎ𝑖. 

From the vehicle's predicted direction θ′𝑣𝑒ℎ𝑖, the next lane length 𝐿𝑡ℎand 𝑑𝑣𝑒ℎ𝑖 are known now, 

then we can calculate the estimated 𝑇′
𝑙𝑒𝑎𝑣𝑒 with predicted next vehicle’s position using Equation 

(4.4).  

The pseudocode for complete algorithm steps for 𝑇′
𝑙𝑒𝑎𝑣𝑒 is discussed in Algorithm 4.2. After 

calculating the four measures for each vehicle at each instant of time, the GRA model is used to 

find the vehicles’ score. The GRA is explained in the next subsection. 

Algorithm 4.2: 𝑻′
𝒍𝒆𝒂𝒗𝒆 Pseudocode for each vehicle in the cluster  

Inputs: 𝐿𝑡ℎ, 𝑑𝑣𝑒ℎ𝑖, 𝑣𝑣𝑒ℎ𝑖, 𝑉𝑒ℎ𝑖𝑛𝑢𝑚: number of vehicles in the cluster 

1. For 𝑖 = 1: 𝑉𝑒ℎ𝑖𝑛𝑢𝑚 

Calculate the predicted vehicle position (𝑋′𝑣𝑒ℎ𝑖, 𝑌′𝑣𝑒ℎ𝑖) and direction θ′
𝑣𝑒ℎ𝑖𝑡+1

 at the 

next time instant using PGRP, Equations (4,6) and (4.5), respectively. 

a. if  θ′
𝑣𝑒ℎ𝑖𝑡+1

≠ θ 𝑣𝑒ℎ𝑖𝑡
 

Calculate the estimated time to leave 𝑇′
𝑙𝑒𝑎𝑣𝑒 using Equation (4.4) using the new 

Lane length and distance. 

b. end if 

2. end for 

Output:  𝑇′
𝑙𝑒𝑎𝑣𝑒 
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4.2.3 Grey Relational Analysis Model 

This chapter proposes a novel metric for selecting the CH that meets the requirements of 

maximum relative speed ( ψvehi), neighbourhood degree (η), eccentricity (𝔈), and maximum 

time to leave estimation (T′
leave) based on GRA. The relation analysis is calculated between 

those parameters for each vehicle to get a single weighted relational value. The vehicle with the 

highest relational analysis value is assigned as the head of that cluster. GRA is part of grey 

system theory, which is suitable for solving problems with complicated interrelationships 

between multiple factors and variables. The fundamental advantage of GRA is that it can handle 

with data that is imprecise, ambiguous, or vague. This is due to the fact that GRA constructs the 

grey relational grade (GRG) using a mathematical technique. GRA is thus more robust than other 

systems that rely on heuristics or subjective judgments. It also has the advantage of being able to 

work with both quantitative and qualitative data. GRA is thus more adaptable than other 

approaches that demand data in a certain format. The procedures of GRA are shown in Figure 

4.4. 

 

Figure 4.4  Grey Relational Analysis Procedure  [104]. 
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In GRA, there are three steps for decision making:  

1. Find the grey relational generation.  

2. Calculate the grey relational coefficient.  

3. Use the grey relational coefficient to make a decision. 

These steps are mathematically formulated as: 

Step 1: The CH selection parameters are used to generate a matrix of 𝑉𝑒ℎ𝑖𝑛𝑢𝑚 × 4, where 

𝑉𝑒ℎ𝑖𝑛𝑢𝑚 is the number of vehicles in a cluster. This matrix is used to generate a relational matrix 

as [104] 

Yik =
xik−min(xik)

max(xik)−min(xik)
                                                         (4.7)                                                                                                                

The basic step of GRA is to convert the performance of each option xik into a comparability 

sequence which is denoted by the letters Yik. A reference sequence is defined in accordance with 

these sequences. Equation (4.7) creates a normalized matrix of CH selection attributes to avoid 

biasing caused due to larger sample values in any attribute.  

Step 2: The grey relational coefficient is the closeness value between Yik and Y0k. Higher 

coefficient value indicates the closer are two samples. It can be calculated as: 

 γ(Y0k, Yik) =
∆min+μ ∆max

∆ik+μ ∆max
                                                        (4.8)                                                                                                                      

γ is the grey relational coefficient between Y0k and Yik.  

Here ∆ik= |Y0k − Yik|, ∆min= min ∆ik , and ∆max= max ∆ik . μ is the distinguishing coefficient 

and randomly lies in between 0 and 1. It regulates the expansion and compression of relational 

coefficient. Using Equation (4.8) coefficient, grey relational coefficient is calculated which is 

used to select the higher relational samples.                                                                                                          

Step 3: In our case, the output from Equation (4.8) is used to generate vehicle grade g(v). The 

vehicle with the highest g(v) among other vehicles in the cluster is considered as the head of that 

cluster. The  g(v) is obtained using [105]: 

g(v)  =  ∑ 𝑤𝑘γ(𝑌0𝑘
𝑛
𝑘=1 , 𝑌𝑖𝑘)            for 𝑖 =  1,2, … … , 𝑉𝑒ℎ𝑖𝑛𝑢𝑚                         (4.9) 
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Algorithm 4.3: Pseudo Code for CH selection Using GRA Model 

Input : Number of clusters , Number of vehicles in each clusters at each instant of time 

𝑉𝑒ℎ𝑖𝑛𝑢𝑚, vehicles coordinators (𝑋, 𝑌), current Lane length (L), current direction (θ) 

For t= 1 : instant of time 

For i=1: clusters 

   For j=1: vehicles in cluster 

        Calculate the CH parameters: 𝜂 ,  𝜓𝑣𝑒ℎ𝑖, and 𝔈 

         Predicted the next vehicle’s coordinators (X’, Y’) 

         Find the new vehicle’s direction from predicted coordinators  θ′ 

         Calculate 𝑇′
𝑙𝑒𝑎𝑣𝑒 using predicted vehicle’s position 

    End for 

    Input  the four  matrices (attributes) to GRA model with their weights,  where   

   ∑ 𝑤𝑘 = 1𝑛
𝑘=1  

    Generate a matrix 𝑋 of 𝑉𝑒ℎ𝑖𝑛𝑢𝑚 × 4 

        Normalize the matrix X 

For i = 1: 𝑉𝑒ℎ𝑖𝑛𝑢𝑚 

a. For k = 1: n 

                           Calculate the grey relational coefficient γ(Y0k, Yik)  

b. end for 

end for 

        Generate a graph object from grey relational coefficient γ(Y0k, Yik) 

 

     Calculate the Vehicle’s score 𝑔(𝑣) using Equation (4.9). 

         Highest-score vehicle is selected as a CH  

                            𝐶𝐻 = max 𝑔(𝑣) 

End for 

End for 

Output: CH vehicle 
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Where 𝑛 =  4 (the number of CH selection parameters in our work), 𝑖 is a number of 

alternatives. γ(𝑌0𝑘, 𝑌𝑖𝑘) is the grey relational coefficient, how near 𝑌𝑖𝑘 is to 𝑌0𝑘 is determined 

using it.  𝑤𝑘 is the weight of the four parameters, where ∑ 𝑤𝑘 = 1𝑛
𝑘=1 .  

The grade for each vehicle in a cluster is calculated using the GRA. At any given time 𝑡, the 

vehicle with the maximum relational analysis (𝑔(𝑣)) is assigned as the head for each cluster. The 

pseudo-code for the CH selection phase is introduced in Algorithm 4.3.  

4.2.4 Time Complexity of EtHgSC Scheme 

The total time complexity of the EtHgSC scheme is expressed as in Equation (3.21) in Chapter 3: 

𝑂𝑇𝑂𝑇 = 𝑂𝐶𝐹+𝑂𝑅𝑆𝑈 + 𝑂𝐶𝐻 

The major steps involved of the cluster formation are the construction of a hypergraph, Laplacian 

followed by eigenproblem solving using Eigen-trick method, and then performing the K-means 

to get the optimal set of clusters. 

In hypergraph, the quotient of similarity is taken between each of the vehicles this is calculated 

by constructing a 𝑑 nearest neighbour graph with complexity 𝑂(𝑁2)𝑑. By using Eigen-trick 

method, the hyperedge Laplacian 𝐿𝑒 is processed instead of vertex Laplacian  𝐿𝑣, the time 

complexity for  𝐿𝑒 is 𝑂(𝑁𝑁𝑍(𝐼2)/𝑁). 

“Eigen-trick” provides us a way to calculate 𝑈𝑣 with lower time and space complexity, which is 

demonstrated and compared with Algorithm 3.2 in Chapter 3. The time complexity for solving 

the eigenproblem of the vertex is 𝑂(𝑁3), while the corresponding cost to hyperedge is 𝑂(𝑚3). 

Instead of solving the eigenproblem of 𝐿𝑣  directly, the Eigen-trick method is proposed to solve 

it using the eigenproblem of 𝐿𝑒. It will reduce the computational complexity from 𝑂(𝑁3), to 

𝑂(𝑚3) significantly (𝑚 < 𝑁). Another benefit is that the conversion between 𝑈𝑒 and 𝑈𝑣 is 

accurate without any information loss [100]. The last is the K-Means complexity which is 

dependent on the 𝑂𝐶𝑜𝑝𝑡𝑖𝑚𝑎𝑙
= 𝑂(𝜏𝑁𝐶𝑛𝑢𝑚). So, 𝑂𝐶𝐹 will be: 

𝑂𝐶𝐹 = 𝑂(𝑁2)𝑑 + 𝑂(𝑁𝑁𝑍(𝐼2)/𝑁)  + 𝑂(𝑚3) + 𝑂(𝜏𝑁𝐶𝑛𝑢𝑚)                   (4.10) 

The complexity is reduced by removing the terms of less computational power 



Eigen trick-based Hypergraph Stable Clustering in VANET                             Mays. K. J. Alsabah 

 

103 | P a g e  
 

𝑂𝐶𝐹 =  𝑂(𝑁2)𝑑 + 𝑂(𝑚3)                                                     (4.11) 

The RSU deployment is done using a graph, so the computational complexity is as in Equation 

(3.24) in Chapter 3. 

𝑂𝑅𝑆𝑈 = 𝑂(𝑁2)𝑑 

The CH selection parameters are Relative Speed score ( ψvehi), Neighbourhood Degree (η), 

Eccentricity  (𝔈). Time to leave Estimation (T′leave).  

   𝑂𝐶𝐻 = 𝑂 ψvehi
+ 𝑂η + 𝑂 𝔈 + 𝑂T′leave

                                            (4.12) 

The time complexity for  𝜓𝑣𝑒ℎ𝑖, 𝜂, and 𝔈 are calculated as in Equations (3.26), (3.27), and (3.28) 

respectively. 

𝑂 ψvehi
= 𝑂(𝑁) 

       𝑂η = 𝑂 (log 𝑁2) 

                    𝑂 𝔈 = 𝑂(𝑁2)𝑑 + 𝑂 (𝑁3) 

The complexity of time to leave is calculated for all the vehicles in the network    

                                                              𝑂T′leave
= O(𝑁)                                        (4.13) 

Thus, the complete time complexity is reduced to moving all the terms with less complexity than 

cubic and quadratic terms 

    𝑂𝐶𝐻 = 𝑂(log(𝑁2)) + 𝑂(𝑁3)                                                (4.14)      

The overall complexity is primarily dependent on the hypergraph 

                                          𝑂𝑇𝑂𝑇 = 2𝑂(𝑁2)𝑑 + 𝑂(𝑚3) + 𝑂(log(𝑁2)) + 𝑂(𝑁3)                       (4.15)                     
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4.3 Simulation Results 

The simulation is done using MATLAB as a network simulator, SUMO as a traffic simulator, 

and with the help of TraCI. The area considered for the study is the real map of Iraq’s capital, 

Baghdad. This study's goal is to evaluate cluster stability under various vehicle densities (100 

and 1000) and the dynamic scenario. Also, our proposed is tested at different vehicle speeds (10, 

15, 20, and 25 m/s).  

 

Figure 4.5 Cluster Formation Along with RSU Deployment at an Instant for Our EtHgSC. 

Thirteen clusters are generated using Algorithm 4.1. Each cluster is depicted in a different 

colour. RSUs serve as a cluster centre, they are portrayed in a triangle shape in Figure 4.5. The 

vehicles are more uniformly clustered in the improved hypergraph as shown in Figure 4.5, 

whereas the conventional hypergraph has an uneven distribution of the vehicles as shown in 

Figure 3.8 in Chapter 3.   

The results’ discussion is carried out in three phases; The effect of the predicted next vehicle’s 

position on the cluster stability at different vehicle speeds; the effect of Eigen-trick method on 
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the clustering stability (EtHgSC comparison with our HGCM presented in Chapter 3 and 

improved HGCM by applying the Eigen-trick method in terms of stability at low and high 

traffic); and a state-of-the-art comparison in terms of stability using different cluster performance 

parameters. 

4.3.1 Effect of Predicted next Vehicle’s Position on the Clustering Stability 

The cluster stability is evaluated with some of the cluster performance parameters. Further in this 

section, CH lifetime, CM lifetime, and CH change rate are evaluated in two cases. These cases 

are as: 

Case1: Proposed Scheme with 𝑇′
𝑙𝑒𝑎𝑣𝑒: Evaluation parameters are calculated with the novel 

improved hypergraph using the Eigen-trick method and a set of CH selection parameters with an 

approach to predict the vehicle’s time to leave 𝑇′
𝑙𝑒𝑎𝑣𝑒 (𝜂 ,  𝜓𝑣𝑒ℎ𝑖 , 𝔈, and 𝑇′

𝑙𝑒𝑎𝑣𝑒). In this case, 

the PGRP prediction is used to estimate the future vehicle’s direction. 

Case2: Proposed Scheme with 𝑇𝑙𝑒𝑎𝑣𝑒: This is the case that uses the improved hypergraph with 

the same set of CH selection parameters  (𝜂 ,  𝜓𝑣𝑒ℎ𝑖, 𝔈, and 𝑇𝑙𝑒𝑎𝑣𝑒). However, the PGRP 

prediction is not used to estimate the future direction of the vehicle. The time to leave 𝑇𝑙𝑒𝑎𝑣𝑒 is 

calculated using the current vehicle’s position and direction.  

These two tested cases are plotted at different vehicle speeds (10, 15, 20, and 25 m/s). The 

lifetime of CH and CM should be maximum and the CH change rate should be minimum for the 

best case. Figure 4.6, Figure 4.7, and Figure 4.8 show the effect of the proposed scheme 

with 𝑇′
𝑙𝑒𝑎𝑣𝑒 (Case 1) and the effect of the proposed scheme with 𝑇𝑙𝑒𝑎𝑣𝑒 (Case 2) on the CH 

lifetime, CM lifetime, and the change rate of CH, respectively.  

The CH lifetime, CM lifetime, and CH change rate are tested for the worst-case scenario of 1000 

vehicles. We see that our proposed using 𝑇′
𝑙𝑒𝑎𝑣𝑒  with the predicted next position achieves the 

highest CH lifetime, CM lifetime, and lowest CH change rate particularly at high speed in a 

comparison with our proposed using 𝑇𝑙𝑒𝑎𝑣𝑒 without predicated.  The use of 𝑇′
𝑙𝑒𝑎𝑣𝑒 with 

predicated next vehicle’s position increases the CH lifetime by 22%, the CM lifetime by 12%, 

and decreases the CH change rate by 31% at all vehicle speeds in a comparison with our 



Eigen trick-based Hypergraph Stable Clustering in VANET                             Mays. K. J. Alsabah 

 

106 | P a g e  
 

proposed using 𝑇𝑙𝑒𝑎𝑣𝑒. The change in the vehicle’s direction at the road junction hammers the 

stability. So, the overall stability is enhanced by finding the estimated next vehicle position with 

the help of PGRP prediction, which helps to select the CH that has a high ability to stay in the 

cluster as long as possible.  

 

Figure 4.6 CH Lifetimes for EtHgSC with and without Predicted next Vehicle’s Position. 

 

Figure 4.7 CM Lifetimes for EtHgSC with and without Predicted next Vehicle’s Position. 
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Figure 4.8 CH Change Rate for EtHgSC with and without Predicted next Vehicle’s Position. 

4.3.2 Effect of Eigen-trick Method on the Clustering Stability. 

The effect of the Eigen-trick method on the stability is shown in two cases; case 1: Our proposed 

EtHgSC, and case 2: when Algorithm 4.1 is applied in the cluster formation phase of HGCM 

instead of Algorithm 3.2 in Chapter 3, we named it as Improved HGCM. 

HGCM, Improved HGCM, and EtHgSC are compared at a maximum speed of vehicles at 25 m/s 

and at low and high vehicular density (100, 1000). When Algorithm 4.1 is used instead of 

Algorithm 3.2 in Chapter 3, we find that there is a noticeable improvement in the cluster stability 

in terms of CH lifetime, CM lifetime, and the change rate of CH in a comparison with the 

original HGCM, see Figure 4.9, Figure 4.10, and Figure 4.11.   

The cluster stability of Improved HGCM is enhanced, especially at high densities, with 

approximately 6% of CH lifetime, and the change rate of CH is reduced by approximately 6% in 

a comparison with original HGCM. The CM lifetime is also enhanced, but not too much. This 

improvement is due to the effectiveness of the Eigen-trick method on the hypergraph algorithm, 

which increases the clustering efficiency.  
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Moreover, our EtHgSC achieves more improvement than the Improved HGCM with 

approximately 11% and 6% of CH lifetime and reduces the change rate of CH by 28% and 25% 

at low and high traffics, respectively. Also, there is a considerable improvement in the CM 

lifetime with approximately 2.5% at all traffics. This improvement in our EtHgSC is due to the 

effectiveness of cluster formation algorithm and the CH selection scheme using efficient 

measures with the help of GRA model.  

 

 

Figure 4.9 CH lifetime for EtHgSC in a Comparison with HGCM and Improved HGCM. 
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Figure 4.10 CM lifetime for EtHgSC in a Comparison with HGCM and Improved HGCM. 

 

 

Figure 4.11 CH change rate for EtHgSC in a Comparison with HGCM and Improved HGCM 
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4.3.3 State-of-the-Art Comparison 

A comparison of EtHgSC with some algorithms presented in the literature in terms of cluster 

number and Av. CH lifetime is tabulated in Table 4.1. In addition to the CVoEG and Arkian et 

al. [35] algorithms which we have compared the HGCM with them in Chapter 3, we also 

compared with VMaSC [39] and PMC [47] algorithms which have the highest citations in the 

literature of 365 and 221, respectively. We also compared our EtHgSC with the JCV in [68], 

which highlighted the same cluster stability problem at junctions.  This comparison occurs at low 

traffic density (100 vehicles), and the maximum vehicles speed is set to 25 m/s, as well as 𝑅𝑣𝑒ℎ𝑖 

is set to 200 m for all algorithms. 

As mentioned before, the effectiveness of the designed algorithm was also gazed by the number of 

clusters formed over time. These numbers allow us to evaluate the quality of the formed clusters. 

Few clusters with low-mobility vehicles achieve efficient connections and stable clustering. On the 

contrary, more clusters eventually lead to high overhead and mergers. At low and high traffic 

levels, the EtHgSC constructs 5 and 13 clusters, respectively.  

Table 4.1 Comparison with Different Algorithms at Low Traffic Density. 

Algorithm Av.CH Lifetime Cluster Number 

EtHgSC 81% 5 

JCV 76% 16 

CVoEG 65.5% 20 

Arkian et al. [35] 58% 55 

VMaSC 66% 17 

PMC 41% - 

 

CVoEG was introduced by Khan et al. in [58]. They used a graph spectral clustering algorithm 

and tested it on a highway network. According to the I-5 highway analysis of the California 

environment, CVoEG [58] produces 20 clusters with low traffic density along a road length of 12 

km. It is expected to achieve 65.5% stability. In this study, the speed of vehicles is used to 
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emulate graph edges. Thus, at low variance, as the speed of vehicles is nearly identical, the 

eigenvalues are almost the same, which eventually leads to low cluster formation. 

Our proposed model has raised the concern of the CH stability at the junction, as the vehicle’s 

direction is unpredictable at the road junction. A similar problem is highlighted by Mohammad 

et al. [68] in their work. In the JCV [68], the vehicle direction and transmission range are 

considered for the clustering, and the relative position, direction at the junction, time spent on the 

road, and node’s degree are considered as the CH selection parameters. With 16 clusters 

constructed, the JCV achieves 76% stability 

In the method proposed by Arkian et al. [35], for a highway length of 3000 m, a large number of 

dynamic clusters are projected with a low variance of only 90 vehicles using two-lane analysis. 

This method uses neighbourhood analysis, thus when there are just 90 vehicles, there must be a 

lot of clusters to cover all the vehicles in a sparse region. The CH stability is 58% with low 

traffic flow and large number of clusters. 

The average CH lifetime of the VMaSC algorithm is 66%, with 17 clusters generated for 100 

vehicles. This algorithm considers the relevant mobility metric as the CH selection factor. 

Because of the rapid movement of the vehicle nodes in VANET, the duration of each CH is 

extremely short. So this may cause decreasing the stability. 

PMC algorithm achieves 41% of stability. This ratio is the lowest compared with all other 

algorithms although the CH selection is based on the neighbouring follow strategy. The authors 

didn’t mention the number of constructed clusters, such that Table 4.1 lacks that.  

We can see that there is a significant and noticeable effect of the number of constructed clusters 

on stability; a few clusters' numbers improve the clustering stability. The highest stability is 

achieved using our EtHgSC followed by JCV. So, we can conclude that the formation of 

VANET as a hypergraph improves the clustering efficiency compared with other algorithms. 

Also, the improving hypergraph algorithm using the Eigen-trick method and the CH selection 

scheme in the EtHgSC enhance the CH stability by approximately 9% compared with the HGCM 

in Chapter 3 at low traffic.  
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The results in Figures 4.12 to 4.14 evaluate the clustering stability using three of the most 

important cluster performance parameters, including average CH lifetime, average CM lifetime, 

and CH change rate. As well as the average delay is calculated in Figure 4.15. Our EtHgSC is 

evaluated at different speeds and under low traffic density (100 vehicles) and compared with 

JCV, VMaSC, and PMC algorithms to show its supremacy.  

Average CH Lifetime: We can see that the average CH lifetime indicates a decreasing trend as 

vehicle speed increases. The network's architecture significantly changes as a result of the speed 

increases, breaking the connection. From Figure 4.12, the average CH lifetime for JCV is higher 

than that of VMaSC and PMC because the JCV algorithm takes into consideration the change of 

vehicle route at the junctions when selecting the CH, so it achieves a high CH duration. Our 

EtHgSC achieves the highest duration time of CH in a comparison with JCV, VMaSC, and PMC. 

This achievement is due to our intelligent cluster formation algorithm and the CH selection 

scheme, which helps to select the vehicle that stays in the cluster as long as possible based on 

different measures. Also, our proposed solved the problem of unpredicted changes for CH at the 

junctions, which led to an increase in the stability of the CH. 

 

Figure 4.12 Average CH lifetime at different speeds. 
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Average CM Lifetime: Figure 4.13 shows the lifetime of CM for different speeds. The PMC 

algorithm has a higher CM lifetime than VMaSC, this is due to the use of the following vehicle 

with the highest priority. However, the average CH movement speed is an issue for VMaSC, so 

when a cluster's speed increases, joining to other clusters is simple, and therefore the lifetime of 

CM decreases.  

Although the duration of CMs decreases when the speed is increased, our proposed EtHgSC still 

maintains consistency. The EtHgSC achieves the highest lifetime for CMs of about 10%, 35%, 

and 86% compared with the JCV, PMC, and VMaSC, respectively, at all vehicle speeds. 

 

Figure 4.13 Average CM lifetime at different speeds. 

CH Change Rate: Figure 4.14 shows the relationship between the change rate of CH and the 

vehicle speed. The results show that the CH change rate increases with an increase in the 

maximum permitted speed. The CH change rate for our EtHgSC is lower than JCV, VMaSC, and 

PMC under all conditions. The change rate of CH in our EtHgSC is reduced by 6%, 14%, and 

23% compared with JCV, VMaSC, and PMC, respectively, at all vehicle speeds. 

Average Delay: The average delay is also calculated for our proposed as shown in Figure 4.15; 

it is the time taken for a packet to transfer from source to destination. The delay is a distance-

dependent parameter, and the optimal CH’s location helps to reduce the delay, so the EtHgSC 
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achieves less delay, approximately 24%, 66%, and 80% in a comparison with the JCV, PMC, 

and VMaSC algorithms, respectively. 

 

Figure 4.14 CH Change rate at different speeds. 

 

Figure 4.15 Average Delay at different Speeds. 
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It is also validated from Figures 4.12- 4.15 that as the speed increases, the delay and the change 

rate of the CH increase, and CH and CM stability decrease. This also proves the convention that 

the fast-moving vehicle is less reliable to be selected as CH. 

Finally, our EtHgSC achieves the highest stability in comparison with other clustering 

algorithms; this is because of the Eigen-trick method, which is used to improve the hypergraph 

algorithm and make clustering more efficient. The scheme of CH selection using the four 

measures and the GRA model is also a reason why stability is getting better. 

4.4 Conclusion  

In this chapter, an Eigen trick-based stable clustering approach in VANET is introduced, with the 

goal of increasing the clustering stability through efficient cluster formation and CH selection 

methods.  The whole concept works on two levels: cluster generation and CH selection strategy. 

The cluster formation has been handled using a hypergraph-based spectral clustering algorithm, 

which has been introduced in the previous chapter. The hypergraph algorithm has been improved 

in this chapter using the Eigen-trick method; this method is used to partition both vertices and 

hyperedges, which provides an approach for reducing the computational complexity of the 

clustering. The hypergraph is further optimised to explore the hidden sparsity through the 

removal of the lower non-decomposable graphs. Further, the information loss can be minimised 

further with the help of the Eigen-trick in the tensor trace maximisation hypergraph partitioning. 

Four different parameters have been recommended in this proposed to find the most stable CH in 

each cluster at each instant of time. In addition to relative speed, neighbour degree, and 

eccentricity, the vehicle’s time to leave estimation parameter has been presented to select the 

CH. A relational analysis is developed using grey relational analysis between the four CH 

selection parameters instead of knowledge-based weightage. The stability is highly hampered at 

the change in the vehicle’s direction at the road junction; this also has been improved using our 

efficient CH selection scheme, which enhances the overall stability by avoiding the frequent 

cluster breakage at the junctions. 
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The proposed method has been tested in a real area in Iraq’s capital, Baghdad. Better stability has 

been achieved using our proposed scheme, tested at low and high traffic levels and under 

different vehicle speeds. The results show the supremacy of our proposed in terms of cluster 

stability, also our proposed scheme achieves a considerable reduction in terms of delay in a 

comparison with our previous proposed and other techniques. 
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5.1 Conclusion  

A new future for dynamic information exchange between cultures is represented by vehicular ad 

hoc network (VANET). VANET has a wide range of applications in a variety of aspects, 

including intelligent transportation systems (ITS). 

An overview of VANET, its characteristics, and its challenges have been presented in this thesis. 

Also, VANET communication modes, technologies, and the most important VANET 

applications have been discussed.  

Due to VANET characteristics and challenges, effective clustering techniques are required in 

order to tackle the network scalability issue and support additional VANETs applications. Also, 

clustering methods are necessary to ensure the stability of clusters because VANETs' network 

architecture is dynamic. 

In Chapter 2, we have looked at the current clustering techniques used in VANETs. An intensive 

survey of 55 clustering algorithms has been observed and studied from 2008 to 2022. These 

algorithms have been summarised and classified in terms of clustering procedures: cluster 

formation, cluster head (CH) selection, and cluster maintenance. These algorithms have been 

compared using different parameters. Also, some of the most common metrics used for 

evaluating the performance of clustering algorithms and simulator tools have been presented.  

From the literature survey in Chapter 2, many issues and gaps have been noted, so based on these 

gaps our proposed solution has been presented in Chapter 3.  Our proposed is named a 

HyperGraph Clustering Model (HGCM), and its goal is to increase the clustering stability. In the 

HGCM, clusters have been formed through the designed vehicular-hypergraph-based spectral 

clustering algorithm using the tensor trace maximisation method (TTM). Different metrics have 

been introduced for selecting the CH and using the cumulative multimeric scheme to increase the 

clustering stability. For CH selection, trust metric with deep learning spectrum sensing has been 

introduced. Deep learning-trained spectrum sensing has been used as a model for trust 

calculation. Long short term memory (LSTM) layers are used to recognise the primary vehicle in 

noisy and noiseless environments. A high trust score is awarded to the vehicle which vacates the 

spectrum in the sensing of the primary vehicle. The addition of the trust element results in 20% 
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gain in average CH stability over the combined performance of three existing measures (i.e. 

relative speed, eccentricity, and neighbourhood). The proposed HGCM has been tested for 

various vehicle densities in a real area of Iraq’s capital, Baghdad. Compared with individual 

measures and other techniques, our cumulative approach significantly improved the clustering 

stability as well as improved the network performance in terms of packet delay and throughput. 

To increase the clustering efficiency, the hypergraph spectral clustering algorithm in Chapter 3 

has been improved using the Eigen-trick method. The Eigen-trick method improves the 

clustering efficiency by using higher-order information in eigenvalues. The Eigen-trick has been 

used to calculate the modified Laplacian value in the TTM to improve the clustering. A new 

proposed scheme has been introduced by using this improved algorithm in the cluster formation 

phase in Chapter 4. The proposed scheme is named Eigen trick-base Hypergraph Stable 

Clustering (EtHgSC). In the CH selection phase, In addition to relative speed, neighbour degree, 

and eccentricity, the vehicle’s time to leave estimation parameter has been presented to increase 

the CH stability. A relational analysis has been developed using grey relational analysis among 

the four CH selection parameters instead of knowledge-based weightage. The selected CH using 

this scheme maintains strong connectivity and a stable link lifetime.  

Our EtHgSC proposed has been applied to an urban scenario at low and high traffic levels and 

under different vehicle speeds. The stability is highly hampered at the change in the vehicle’s 

direction at the road junction, this also has been improved which enhances the overall stability by 

finding the estimated next vehicle position with the help of  the predictive directional greedy 

routing protocol (PGRP). In the CH selection phase, the vehicle's time to leave has been 

calculated in two cases; by using PGRP prediction to estimate the future vehicle’s direction to 

get the time to leave, and without estimating the next vehicle’s position (using current vehicle’s 

position). The results showed how the estimated time to leave affected increasing the clustering 

stability by about 22% of CH lifetime and 12% of CM lifetime, and decreasing the CH change 

rate by 31% in a comparison with the second case.  

Also, the effect of the improved hypergraph algorithm has been tested on the cluster formation 

phase of the first proposed in Chapter 3. The results showed the efficiency of this improved 

algorithm with different CH selection schemes and how it helps to increase the stability.  
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Also, the results showed that our EtHgSC method has better performance than state-of-the-art 

methods in terms of cluster stability and delay. 

5.2 Future Works 

In future work, we will attempt to generate a more efficient clustering algorithm using the other 

hypergraph methods like the multilevel recursive graph partition method.  

In order to select the more stable CH, especially at high vehicle densities, we intend to explore 

more metrics for analysis, through which the proposed methodology can be understood. 

With the development of LTE and fifth-generation (5G) and other cellular network technologies, 

many hybrid network architectures for vehicle networks have been proposed. Clustering 

algorithms are becoming more and more important in these hybrid network architectures, and 

they are highly recommended to support vehicle services and to increase the efficiency of 

information delivery with minimum delay. 

Also, due to the high level of collaboration required by clustering algorithms, vehicles must 

share their private information with their neighbours. In this instance, there is still a concern 

about how to achieve a balance between privacy and collaboration. Moreover, not all of the 

sharing information is convinced enough, therefore, during the cooperation process, it is 

important to know how to recognise malicious vehicles. 

The performance of the clustering algorithms may be impacted when taking into account the 

privacy and cooperative security of the vehicles. For example, there may be a delay in the 

transmission of information when a malicious vehicle is detected. Therefore, how to balance the 

clustering performance and the clustering security is still an open challenge. So, we intend to 

generate a more stable and secure clustering technique. 

Also, we will try to develop routing protocols for our models (HGCM and EtHgSC) and compare 

the performance with the existing clustering protocols. 
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Appendices 

Appendix 1: The Map of Baghdad Loading and Directory Making 

 

%%%%----------The map loading and directory making------%% 

Specify the map to be used 

vhcls=100;             %----->  the vehilce density 

map=['map_of_bagdad/',num2str(vhcls)]; 

crntdir=pwd;  % save the current directory path 

addpath([crntdir,'\utility']) 

addpath([crntdir,'\cluster_generations']) 

addpath([crntdir,'\cluster_maintain']) 

addpath([crntdir,'\radio network']) 

 

Create directory to store the results 

d=num2str(clock); 

d(isspace(d))=[]; 

if ~exist('Results','dir') 

    mkdir('Results') 

end 

dirname=['Results/',map]; 

mkdir(dirname) 

vehicle_transrange=200;   %% transmission range of the each vehicle 

rsuTrRnage =350; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 



Appendices                                                                                                                      Mays. K. J. Alsabah 
 

134 | P a g e  
 

Appendix 2: Getting the TraCI and Vehicles’ Information 

import traci.constants 

Get the filename of the example scenario 

% scenarioPath = [scenarioPath '\inter_palmas']; 

cd([map]); 

 

SUMO interfacing and recording of vehicle parameters 

disp('1. SUMO starting and collecting vehicle information...') 

traci.start('sumo-gui -c ./Configuration.sumocfg --start'); 

traci.gui.setZoom('View #0',350) 

traci.gui.setSchema('View #0','real world') 

mapBoundary = traci.gui.getBoundary('View #0'); 

LaneIDlist = traci.lane.getIDList;  % get the lane ids on the map 

% screenshot save 

% traci.gui.screenshot('View #0', 'Network ScreenShot.bmp') 

 

Recording of vehicle parameters at each simulation time step 

disp('The recording of the different parameters of the vehicles'); 

initialVhclID=[]; 

initialPos=[]; 

simTime=1500; 

for i = 1: simTime   % simulation time 

    traci.simulation.step(); 

    vhclID=traci.vehicle.getIDList();  % get vehicle's ID on the road 

  

    if ~isempty(vhclID) 

        for vhcl=1:numel(vhclID) % loop for all vehicles at any instant on the road 

            temp = traci.vehicle.getPosition(vhclID{vhcl}); % measure vehcile position 

            locationX(i,vhcl)=temp(1); 

            locationY(i,vhcl)=temp(2); 

            speedY(i,vhcl) = traci.vehicle.getSpeed(vhclID{vhcl}); % speed 
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            laneid{i,vhcl} = traci.vehicle.getLaneID(vhclID{vhcl}); % getes the lane 

            diststart(i,vhcl) = traci.vehicle.getDistance(vhclID{vhcl}); % total distance traveled from 

begining 

            SpeedDeviation(i,vhcl) = traci.vehicle.getSpeedDeviation(vhclID{vhcl}); % speed 

change 

            vehilceID(i,vhcl) = str2double(vhclID{vhcl})+1; % each vehicle ID 

            angle(i,vhcl) = traci.vehicle.getAngle(vhclID{vhcl}); % angle of the vehicle 

            trust(i,vhcl)=0; 

 

Store the vehicle's ID appearing very first time only with their positions 

     

        end 

    end 

end 

% %%%----------------------Final map of the city---------------------------%% 

cnt=1;laneShape=[]; 

for ii=1:numel(LaneIDlist)   % get the lanes ID and their length 

    temp = strsplit(LaneIDlist{ii},'-'); 

    if size(temp)==1 

        Singlelane(cnt) = LaneIDlist(ii);  % lane IDs 

%         SinglaneLength(cnt) = traci.lane.getLength(LaneIDlist{ii}); % lane length 

%         laneShape=[laneShape,(traci.lane.getShape(LaneIDlist{ii}))]; % lane co-ordinates 

        cnt=cnt+1; 

    end 

end 
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Appendix 3: Obtaining the Adjacency Matrix for Maximum number of 

Vehicles 

%% find the time slot with the maximum number of vehicles%% 

disp(' Step.1 : Obtain the time slot with maximum vehicles'); 

size_detected=[]; 

for i=1:size(locationX,1)  %% scan each time slot 

    temp_var = numel(find(locationX(i,:))); % number of vehicles at any time. 

    size_detected=[size_detected temp_var]; %% store the number vehicles in each time slot 

end  

[maxvhcl, indx]=max(size_detected);  %% index of the slot with maximum vehicle 

disp('Finished.') 

disp(' Step.2 : Obtain an adjacency matrix for the time stamp with maximum vehicle'); 

%% Calculate the distance of each vehicle to other at that time instant%% 

dist_matrix=zeros(maxvhcl);  %% for a adjacency matrix for each vehicle 

adajency_matrix = zeros(maxvhcl); 

for i=1:maxvhcl  %% number of vehicle 

    for k=1:maxvhcl   %% number of vehicle 

        dist_matrix(i,k)=sqrt(sum((locationX(indx,i)-locationX(indx,k)).^2+(locationY(indx,i)-

locationY(indx,k)).^2)); 

        if dist_matrix(i,k)<=vehicle_transrange 

            adajency_matrix(i,k)=1; 

        else 
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            adajency_matrix(i,k)=0; 

        end 

    end 

end 

%% The hypergraph method for finding optimal number of clusters%% 

disp(' Step.3 : The hypergraph method TTM for finding the optimal clsuters'); 

tic 

[evecs,~] = hypergraph(adajency_matrix);  %% hypergraph function 

% evecs = diag(evecs); 

%% The cluster formation with the ID 

disp(' Step.4 : Find the optimal clusters based on the above evaluation'); 

eva = evalclusters(evecs,'linkage','CalinskiHarabasz','KList',[iniK:K]); % cluster evaluation using 

the CalinskiHarabasz 

no_clusters=eva.OptimalK; 

evecs1 = evecs(1:no_clusters,:)'; % eigen vectors for optimal clusters 

N=size(dist_matrix,2); 

for i = 1:N      % normalize the eigen vectors before clustering 

    if (norm(evecs1(i,:))>0) 

        evecs1(i,:) = evecs1(i,:)./norm(evecs1(i,:)); 

    end 

end 
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vhcls_inst = [locationX(indx,:)',locationY(indx,:)'];% vehicles coordiantes at clustering time 

instant 

[idx]=kmeans(evecs1,no_clusters); 

toc 

for i=1:no_clusters   %% no of clusters 

%         cluster_bin{i}=find(eva.OptimalY(:,1)==i);  %% no of vehicles in each cluster 

        cluster_bin{i}=find(idx==i);  % vehicle's allotment in clusters to display in figure 

        binCount(i)  = numel(find(idx==i)); 

end 

if any(binCount<3)% if cluster has less than 3 vehicles, remove that cluster 

    removbinIndx = find(binCount<3);  

    cluster_bin(removbinIndx)=[]; 

    no_clusters=no_clusters-numel(removbinIndx); 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Appendix 4: Cluster Head Selection Parameters 

%% Cluster Head selection 

%%%--------------------Cluster maintenance Phase--------------------------% 

disp(' Step.7. Calculation for CH parameters') 

clusterNo=size(placed_RSU_loc,1);    %% Number of clusters 

car_RSU_connect = zeros(size(locationX,1),size(locationX,2)); 
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%% Start the clusterias intial data 

car=[]; 

tic 

for tim=20:size(locationX,1) 

    %% for each time span 

    car=locationX(tim,:);  %% take the vehicles at each time instant 

    %% Distance between the RSU and the vehicles 

    %disp('3.1 Distance between the car and RSU') 

     

    dist_matrix=zeros(size(locationX,2),clusterNo);  % initialize the distance matrix of vehicle 

and RSU 

    rsu_car_connect = zeros(size(locationX,2),clusterNo);% initialize the connection matrix of 

vehicle and RSU 

    for inst=1:size(locationX,2) 

       if car(inst)~=0 

        for k=1:clusterNo   %% distance between the car and the RSU 

            dist_matrix(inst,k)=sqrt(sum((locationX(tim,inst)-

placed_RSU_loc(k,1)).^2+(locationY(tim,inst)-placed_RSU_loc(k,2)).^2)); 

            if dist_matrix(inst,k)<=rsuTrRnage   % check the vehicle connected to which RSU 

                rsu_car_connect(inst,k) = 1; 

            else 

                rsu_car_connect(inst,k)=0; 
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            end 

        end 

       end 

        % if vehicle is connected to more than 1 RSU, select the nearest 

        % one 

        if numel(find(rsu_car_connect(inst,:)))>1 

            [~,ind] = min(dist_matrix(inst,:));  % indx of minimum distant RSU 

            car_RSU_connect(tim,inst)=ind;       % variable that saves the car connected to RSU a 

each time instant 

        end 

    end 

     

    %% Start the parameter analysis 

    for k=1:clusterNo  % loop for each cluster 

        no_car = numel(find(rsu_car_connect(:,k)));% cars in each cluster 

        if ~(no_car==0) 

            if no_car<3      % if there is only one car in the cluster 

%                 disp('Less than 3 cars in cluster; so exiting the loop') 

            else 

                 %average speed calculation in each cluster 

                cluster_average_speed = mean(speedY(tim,find(rsu_car_connect(:,k)))); 
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                %% ===== Calculation for the eccentricity ============ 

                % calculate the distance on each vehicle to other in that 

                % cluster 

                vhclsind_Cluster = find(rsu_car_connect(:,k));  %get the index of vehilces  

                vhclsIDinCluster = vehilceID(tim,vhclsind_Cluster); % vehicles id in each cluster 

                 TotalCM_old(k,tim) = numel(vehilceID(tim,vhclsind_Cluster)); % Total cluster 

members in each cluster at every simulation time 

                % CM ID 

                CMID_old{k,tim} = vhclsIDinCluster; 

                cluster_CHeccencity=[]; 

                

[cluster_CHeccencity,nbrsDegree]=eccenctricity_new(tim,vhclsind_Cluster,locationX,locationY

,vehicle_transrange); % call eccentricity function 

                 

                %% ===== Calculation of Vehicle s Relative Speed ============ 

                sthr=2.77;   % the speed threshold 

                delta=0.01;    %% delta update in speed 

                 

                Rel_speedDiff=speedY(tim,find(rsu_car_connect(:,k)))-cluster_average_speed; 

%relative speed of each vehicle 

                spedInd = Rel_speedDiff < sthr ;   % index of vehicle with relative speed lesser than 

threshold 

                Rel_speedDiff = Rel_speedDiff+delta.*ones(1,numel(spedInd)).*spedInd; 
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                spedInd_1 = Rel_speedDiff > sthr ;   % index of vehicle with relative speed higher 

than threshold 

                Rel_speedDiff = Rel_speedDiff-delta.*ones(1,numel(spedInd_1)).*spedInd_1; 

                cluster_CHavrege_speed = Rel_speedDiff;     

                 

                %====== calculation of neighborhood degree 

                cluster_CHneighbourDegree = nbrsDegree;  

                 

                %====== total score calculation 

                cluster_CHtotal=sum([cluster_CHneighbourDegree',... 

                                      cluster_CHtrust',.... 

                                      cluster_CHavrege_speed',... 

                                      cluster_CHeccencity']);             

                 

                %--------------### Ch from the proposed scheme --------------------------- 

                [~,Chindex]=max(cluster_CHtotal);   % get the cluster head vehicle ID index for 

                CHid(tim,k)  = vhclsIDinCluster(Chindex); % cluster head vehicle ID 

                [~,index_ecc]=max(cluster_CHeccencity); % maximum eccentricity vehicle index in a 

cluster 

                CHid_eccentricity(tim,k)  = vhclsIDinCluster(index_ecc); 

                [~,index_trust]=max(cluster_CHtrust); % maximum reliability score vehicle index in a 

cluster 
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                CHid_trust(tim,k)  = vhclsIDinCluster(index_trust);               

                [~,index_rspeed]=max(cluster_CHavrege_speed);% maximum relative speed vehicle 

index in a cluster 

                CHid_relativeSpeed(tim,k)  = vhclsIDinCluster(index_rspeed); 

                [~,index_neigh]=max(cluster_CHneighbourDegree); % maximum Neighbourhood 

vehicle index in a cluster 

                CHid_nbrdegree(tim,k)  = vhclsIDinCluster(index_neigh);  

             

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Appendix 5: Grey Relational Analysis and PGRP Function 

function grg = gra(temp,w) 

% normtemp = normalize(temp,1,'range'); 

normtemp = normalize(temp,1); 

for pp=1:size(normtemp,2) 

    maxval(1,pp) = max(normtemp(:,pp)); 

    delta(:,pp)= maxval(1,pp)-normtemp(:,pp); 

end 

grg=zeros(size(delta,1),1); % grey relational grade initialization 

for pp=1:size(normtemp,2) 

    gamma(:,pp) = (min(delta(:,pp))+0.5.*max(delta(:,pp)))/(delta(:,pp)+0.5.*max(delta(:,pp))); 

    grg = grg+w(pp).*gamma(:,pp); 

end 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

PGRP Function 

function predicted = predictPGRP(loc,v,theta) 
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% loc = current locations co-ordinates 

%v= velocity 

% theta= moving angle 

%t % time insec 

X = loc(1)+v*t*cos(theta); 

Y = loc(2)+v*t*sin(theta); 

predicted=[X,Y]; 

%%%%%%%%%%%%%%%%%%%%%%%% 
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Abstract: This thesis brings original contributions, mainly to VANET clustering algorithms. In order to 

guarantee cluster stability, two clustering approaches based on the hypergraph theory are designed as a complete 

solution for VANET challenges. Each approach is bifurcated into two parts; cluster generation and cluster head 

selection (CH). This is our experiment with the hypergraph theory at different clustering schemes and CH 

selection parameters. In this thesis, a formulation of VANET through hypergraph spectral clustering is 

introduced. Hypergraph partitioning through the tensor trace maximisation (TTM) method is presented. Then, 

the Eigen-trick is used to calculate the modified Laplacian value in TTM to improve the clustering. Also, this 

thesis presents two CH selection schemes using different parameters to select the most stable vehicle as a head. 

Strong connectivity and a stable link lifetime are obtained using these schemes. As well as these schemes 

improve the network performance compared with other techniques in the literature. 

All simulation is conducted in MATLAB, with the Traffic Control Interface (TraCI) and the Simulation of Urban 

Mobility (SUMO) being used to model urban transportation. The crowded market area of Baghdad, Iraq is 

considered for the simulation, it is extracted from the open street map (OSM).  

 

Résumé : Cette thèse apporte des contributions originales, principalement aux algorithmes de clustering 

VANET. Afin de garantir la stabilité du cluster, deux approches de clustering basées sur la théorie des 

hypergraphes sont conçues comme une solution complète pour les défis VANET. Chaque approche est divisée 

en deux parties ; génération de cluster et sélection de tête de cluster (CH). Il s'agit de notre expérience avec la 

théorie de l'hypergraphe à différents schémas de regroupement et paramètres de sélection CH. Dans cette thèse, 

une formulation de VANET par regroupement spectral d'hypergraphes est introduite. Le partitionnement 

hypergraphique par la méthode de maximisation de la trace du tenseur (TTM) est présenté. Ensuite, le Eigen-

trick est utilisé pour calculer la valeur laplacienne modifiée en TTM pour améliorer le clustering. En outre, cette 

thèse présente deux schémas de sélection CH utilisant différents paramètres pour sélectionner le véhicule le plus 

stable en tant que tête. Une forte connectivité et une durée de vie de liaison stable sont obtenues à l'aide de ces 

schémas. De plus, ces schémas améliorent les performances du réseau par rapport aux autres techniques de la 

littérature. 

Toutes les simulations sont effectuées dans MATLAB, avec l'interface de contrôle du trafic (TraCI) et la 

simulation de la mobilité urbaine (SUMO) utilisées pour modéliser le transport urbain. La zone de marché 

bondée de Bagdad, en Irak, est prise en compte pour la simulation, elle est extraite du plan des rues ouvert 

(OSM). 
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