Z*-SMALL SUBMODULES AND Z*-HOLLOW MODULES

HIBA R. BAANOON

ABSTRACT. This work introduces a new class of submodules which we call Z^* -small, Z^* -maximal and Z^* -radical submodules. We show that there is no general relation between the maximal and Z^* -maximal submodules. In contrast, Z^* -small and Z^* -radical submodules are generalizations of the small and radical submodules. Also, this work introduces a new class of modules called Z^* -hollow and Z^* -semihollow as a generalization of the hollow and semihollow modules and shows no general relation between e^* -essential small and Z^* -small. Further, this work studies some properties of those concepts, such as the finite sums, direct sums and images of those concepts. Finally, this work investigates submodules which are not Z^* -small, Z^* -maximal, Z^* -radical, Z^* -hollow, or Z^* -semihollow.

1. Introduction

Throughout this paper all rings are commutative with identity and all modules are unitary right R-modules. A module M is called cosingular when $Z^*(M) = \{x \in M | xR \text{ is a small in } E(M)\} = M$, where E(M) is the injective envelope of M. For a submodule A of module M, $Z^*(A) = A \cap Z^*(M)$. Cosingular submodules are closed under submodules, direct sums, homomorphic image, and every \mathbb{Z} -module is cosingular. For more details about cosingular submodules, see [1]. If C + C' = M, then C' = M, a submodule C of module C is said to be small, see [2] and [3]. Jacobson radical submodule of C is the total of all small submodules of C is and [5]. A nonzero module C is considered semihollow if each proper finite generated submodule is small, see [5] and [6]. Many authors generalized small submodule, see [7, 8, 9].

DOI: 10.35834/2025/3701011

MSC2020: 16D10, 16D90, 16D99

Key words and phrases: Hollow modules, Maximal submodules, Radical submodules, Semihollow modules, Small submodules