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ABSTRACT

Rolling Contact Fatigue (RCF) manifests itself in different engineering
applications such as bearings, gears, railway tracks, and cams. In Wind Turbine
Gearboxes (WTGs), which are designed to be in service for 20 to 25 years, the service
life of their bearings is often below their design life despite depending on advanced
technologies and standards in the gearbox design. This premature bearing failure
occurs by flaking, mainly in the bearing inner races. Furthermore, bearing service life
cannot be precisely predicted despite many life prediction models and using advanced
analyses for the gearbox design. This premature bearing failure increases the wind
energy cost due to unplanned maintenance and early replacement. In addition to that
the main causes and mechanisms of this premature failure have not been completely
understood. This has motivated an increasing investigation in this field due to the
scientific and economic impacts.

There are a considerable number of factors affecting premature bearing failure. Three
parameters which are widely reported as the main causes were investigated in this
study which are contact pressure, slipping and impact loading. Two failed planetary
bearings from a multi-megawatt wind turbine gearbox were investigated first to
evaluate their surface and subsurface damage features and to estimate the parameter
testing levels. A new test rig that can apply impact loading in combination with
compression and slipping was designed. Two contact discs made from bearing material
(AISI 52100 steel) were used in this test rig. Sixteen tests are designed using Minitab
software for design of experiments using a line contact with flat test discs with stress
concentration at the contact edges because stress concentration cannot be avoided in
roller bearings, which is the type usually used in the turbine gearboxes. The effect of
the key parameters on the test disc life in terms of the number of cycles to failure and
subsurface damage features distribution at the microscale level were analyzed. These
distributions were correlated with the subsurface stress distribution within the contact
region of the bearings and the test discs to predict which stress type was responsible
for each damage type. Further tests were also designed and conducted to avoid the
stress concentration using fully crowned disc profiles to investigate the effect of the key
parameters on disc life. The investigation led to the suggestion of a new simple damage
estimation model depending on the contact stress levels and the number of cycles
under each level.



The results of the qualitative and quantitative investigation confirm the considerable
role of contact stress followed by slipping and then impact loading. Despite impact-
loading affecting damage as contact pressure, it reveals two different effects on the
subsurface damage features. The first was observed in shallow regions as internally
cracked inclusions within the disc material while, the second by introducing damaged
inclusions in deeper regions. The individual and interactive effects of impact loading
with the other two parameters were found to be different from the compression loading
effects. The correlation of damage distribution with the subsurface stress distributions
confirms the postulation of Von-Mises and maximum shear stresses as being the main
contributors to damage initiation and propagation. The suggested life prediction model
was tested by using the test results and real wind turbine operating data of SCADA for
two years in addition to using the average annual wind speed distribution. The results
of this model were very close to the reported wind turbine gearbox bearing life. More
testing is still required to confirm the reliability of this simple and applicable model.
The metallographic investigations confirmed that the subsurface microcracks were
often not associated with non-metallic inclusions, but may be started from the voids
associated with the material carbides is a significant damage initiation source in
addition to that of non-metallic inclusions which have been widely reported in the
previous studies. Furthermore, Slipping Ratio (SR) is found to have more effect under
low contact loading levels. A considerable role of impact loading in the butterfly wing
damage feature is postulated. Moreover, the Intrusion/Extrusion and dislocation
damage mechanism theories may be more suitable for describing overloading fatigue
damage.

The novelty of this study is that it is the first study of the rolling contact fatigue life and
the behaviour of the bearing steel under impact-loading in combination with
compression and sliding to investigate the individual and interactive effects of these
parameters on the trend of fatigue life variation by developing a new test rig. A new
bearing life prediction methodology is proposed, and the results showed a lower
percentage of errors in the turbine bearing predicted life compared with the standards
currently use. More tests and metallographic investigations are recommended to
investigate the effect of lower and higher contact stress levels and impact loading to
understand the effect of these parameters on the initiation and propagation of the
subsurface damage features.
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NOMENCLATURES

Unless otherwise stated, all units used through this thesis are SI.

o Stress (Pa)

P, Maximum contact pressure (Pa)

a and b Half of the contact width (m)

T, Tays Shear, orthogonal and unidirectional shear stresses (Pa)

Tmax

01,0,, 03 Principal stresses (Pa)

oy Yield stress (Pa)

z Depth beneath the contact surface (m)

Zrol Number of bearing roller

Lo Rated bearing life with 90% reliability in million cycles (Cycle)
c Dynamic load capacity (N)

Deq Equivalent radial load (Pa)

n Number of cycles

N, Ny Number of cycles to failure

e Life estimation empirical exponent

D Damage

Xk Variable depends on loading level

r Cyclic ratio (number of rotating cycles to number of cycles to failure)
A and B Constants

w Exponent depend on fatigue stress amplitude

o The fraction for crack initiation

p The fraction of crack propagation

N;, Ni Number of cycles for crack initiation and propagation respectively
mand n Contact parameters



R,

HV
HRC
Uia, U
SR

AR

T, T,

R, R>

Bearing raceway survival probability (%)
Fatigue life (Cycle)

Initial and final crack lengths (m).

Modulus of elasticity (GPa)

Poisson’s ratio

The gear ratio of the turbine gearbox

Power of turbine generator (W)

Number of rows in planetary bearings
Rotating speed of the turbine generator (rad/s)
Overall drivetrain efficiency

Ring gear diameter in planetary stage (m)

Sun gear diameter in planetary stage (m)
Torque (N.m)

Arithmetic surface roughness

Vickers hardness

Rockwell Hardness

The linear velocities of the upper and lower test disc respectively (m/s)
Slipping ratio

Aspect ratio

Upper and lower test disc thickness respectively (m)
Upper and lower test disc radii respectively
Density (kg/m?)

Dynamic viscosity (cSt)

Lubricant film thickness (pum)

kinematic viscosity (cP)

Pressure-viscosity coefficient

Friction coefficient



Vcam

Ncam

Wi
Vimp

My

Poi
Hmean
,Binput

€noise

SD

Fon
tn

Nr

Tip cam velocity (m/s)

Cam rotational speed (rpm)

Cam tip radius (m)

Impact lever rotational speed (rad/s)
Impact velocity (m/s)

Effective impact mass (kg)

The distance between the radius of gyration and impact lever center (m)
Angular mass moment of inertia (kg.m?)
Length (m)

Stiffness parameter (N/m)

Impact energy (J)

Impact force (N)

Maximum contact pressure due to impact (Pa)
Mean value of the output

Effect of the input factor

Error due to noise

Standard deviation

Scale Parameter

Shape Parameter

probability fraction

Test number

Total number of tests

Time (s)

Vi



ABBREVIATIONS

RCF Rolling Contact Fatigue
WTGs Wind Turbine Gearboxes
O&M Operating and Maintenance
WT Wind Turbine

WE Wind Energy

RE Renewable Energy

LSS Low-Speed Shaft

PP Planetary Pin

HSS High-Speed Shaft

MSS Medium Speed Shaft

Uw UpWind

DW Down Wind

WSF White Structure Flaking
DEAs Dark Etching Areas

WTGBs Wind Turbine Gearbox Bearings
WEAs White Etching Areas

WEBs White Etching Bands

WECs White Etching Cracks

SR Slipping Ratio

R/S Rolling/Sliding

SCADA Supervisory Control And Data Acquisition
WTs Wind Turbines

LRM Light Reflection Microscope
OD Over-rolling Direction

WL White Layer

Dz Deformed Zone



LEDS

FHA

LEAs

LAB

HAB

FE

EHL

NREL

SRCR

DRCR

SEM

EDX

WD

HV

AISI

HRC

SRACBs

DOE

SD

PDF

EFDA

CTE

DLDR

TF

LEFM

AR

Low Energy Dislocation Structure
Frictional Heat Accumulation

Light Etching Areas

Low Angle Band

High Angle Band

Finite Element

Elastohydrodynamic Lubrication
National Renewable Energy Laboratory
Single-Row Cylindrical Roller bearing
Double-Row Cylindrical Roller bearing
Scanning Electron Microscope

Energy Dispersive X-ray analysis
Working Distance

Vickers Hardness

American Iron and Steel Institute
Rockwell Hardness

Single Row Angular Contact Ball Bearings
Design Of Experiment

Standard Deviation

Probability Density Function

Energy Fraction of Damage Accumulation
Palmgren-Miner theory

Coefficient of Thermal Expansion
Double Linear Damage Rule

Transfer Function

Linear Elastic Fracture Mechanics

Aspect Ratio



PS

COD

Probability of Survival

Crack Opening Distance
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