

The University Of Sheffield.

Department Of Mechanical Engineering.

EFFECT OF COMPRESSION, IMPACT AND SLIPPING ON ROLLING CONTACT FATIGUE AND SUBSURFACE MICROSTRUCTURAL DAMAGE

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Author:

Jasim Hasan Ilik AL-Bedhany

Registration No: 140249307

February 2020

ABSTRACT

Rolling Contact Fatigue (RCF) manifests itself in different engineering applications such as bearings, gears, railway tracks, and cams. In Wind Turbine Gearboxes (WTGs), which are designed to be in service for 20 to 25 years, the service life of their bearings is often below their design life despite depending on advanced technologies and standards in the gearbox design. This premature bearing failure occurs by flaking, mainly in the bearing inner races. Furthermore, bearing service life cannot be precisely predicted despite many life prediction models and using advanced analyses for the gearbox design. This premature bearing failure increases the wind energy cost due to unplanned maintenance and early replacement. In addition to that the main causes and mechanisms of this premature failure have not been completely understood. This has motivated an increasing investigation in this field due to the scientific and economic impacts.

There are a considerable number of factors affecting premature bearing failure. Three parameters which are widely reported as the main causes were investigated in this study which are contact pressure, slipping and impact loading. Two failed planetary bearings from a multi-megawatt wind turbine gearbox were investigated first to evaluate their surface and subsurface damage features and to estimate the parameter testing levels. A new test rig that can apply impact loading in combination with compression and slipping was designed. Two contact discs made from bearing material (AISI 52100 steel) were used in this test rig. Sixteen tests are designed using Minitab software for design of experiments using a line contact with flat test discs with stress concentration at the contact edges because stress concentration cannot be avoided in roller bearings, which is the type usually used in the turbine gearboxes. The effect of the key parameters on the test disc life in terms of the number of cycles to failure and subsurface damage features distribution at the microscale level were analyzed. These distributions were correlated with the subsurface stress distribution within the contact region of the bearings and the test discs to predict which stress type was responsible for each damage type. Further tests were also designed and conducted to avoid the stress concentration using fully crowned disc profiles to investigate the effect of the key parameters on disc life. The investigation led to the suggestion of a new simple damage estimation model depending on the contact stress levels and the number of cycles under each level.

The results of the qualitative and quantitative investigation confirm the considerable role of contact stress followed by slipping and then impact loading. Despite impactloading affecting damage as contact pressure, it reveals two different effects on the subsurface damage features. The first was observed in shallow regions as internally cracked inclusions within the disc material while, the second by introducing damaged inclusions in deeper regions. The individual and interactive effects of impact loading with the other two parameters were found to be different from the compression loading effects. The correlation of damage distribution with the subsurface stress distributions confirms the postulation of Von-Mises and maximum shear stresses as being the main contributors to damage initiation and propagation. The suggested life prediction model was tested by using the test results and real wind turbine operating data of SCADA for two years in addition to using the average annual wind speed distribution. The results of this model were very close to the reported wind turbine gearbox bearing life. More testing is still required to confirm the reliability of this simple and applicable model. The metallographic investigations confirmed that the subsurface microcracks were often not associated with non-metallic inclusions, but may be started from the voids associated with the material carbides is a significant damage initiation source in addition to that of non-metallic inclusions which have been widely reported in the previous studies. Furthermore, Slipping Ratio (SR) is found to have more effect under low contact loading levels. A considerable role of impact loading in the butterfly wing damage feature is postulated. Moreover, the Intrusion/Extrusion and dislocation damage mechanism theories may be more suitable for describing overloading fatigue damage.

The novelty of this study is that it is the first study of the rolling contact fatigue life and the behaviour of the bearing steel under impact-loading in combination with compression and sliding to investigate the individual and interactive effects of these parameters on the trend of fatigue life variation by developing a new test rig. A new bearing life prediction methodology is proposed, and the results showed a lower percentage of errors in the turbine bearing predicted life compared with the standards currently use. More tests and metallographic investigations are recommended to investigate the effect of lower and higher contact stress levels and impact loading to understand the effect of these parameters on the initiation and propagation of the subsurface damage features.

PUBLICATIONS AND PRESENTATIONS

Publications

- ✤ Jasim H Al-Bedhany and Hui Long, "Microscopic investigation of subsurface initiated damage of wind turbine gearbox bearings," J. Phys.: Conf. Ser. 1106 012029, 2018.
- Tahseen Ali Mankhi, Stanisław Legutko, Jasim H AL-Bedhany and Abdulmuttalib A Muhsen, "Selecting the Most Efficient Bearing of Wind Turbine Gearbox Using (Analytical Hierarchy Process) Method "AHP", International Conference on Sustainable Engineering Techniques, Iraq, March 2019.

Presentations

- "Investigation of premature failure of wind turbine gearbox bearings," Energy 2050, Energy Research Symposium (ERS), Grantham Centre, the University of Sheffield, UK, 2017.
- "Microscopic investigation of subsurface initiated damage of wind turbine gearbox bearings", MPSVA conference, Clare College, University of Cambridge, Cambridge, UK, 2018.

Poster presentations

 "BEARING WHITE ETCHING CRACK DAMAGE AND LIFE PREDICTION METHOD," a poster presented in the Ph.D. poster Event at the University of Sheffield 2017.

DEDICATION

To my homeland (IRAQ) the dearest than all. To every drop of blood spilled by the Iraqi martyrs and any others injured during the battle against ISIS (Terrorism State). To my university (Misan), its Engineering college and everybody who supported me during the study.

To the spirit of my father, to my mother and my brother Ahmed.

To my wife and my children Hasan, Aya, Retaj, Zahraa, and Ahmed.

To my friends who care about me and hope me to succeed.

I hope I will be as you expect, and I promise you that, I shall continue doing my best to serve humanity.

Jasim H. AL-Bedhany

ACKNOWLEDGMENTS

The author sincerely thanks the Iraqi Ministry of Higher Education and Scientific Research (MOHESR), The Iraqi Cultural Attaché in London, UK, Misan University and Engineering College for sponsoring my Ph.D. scholarship. Special thanks to my supervisor Professor R. Lewis for his support, guidance, and monitoring of this study and for Professor Bill Nimmo and the head of the department Professor Neil Sims. Thanks to Vestas Wind System A/S for supplying the two failed planetary bearings.

A special thanks to many others have provided a fruitful input to this project, including:

- * Terry Hattersley, Harthill[©] Development Ltd. company for his support and help in the manufacturing of the test rig.
- * Phillip C. Pickstock, the Departmental Technical Manager, for his support in installing the electrical controls of the test rig.
- * Jamie Booth, the department research technician, for his support in manufacturing some components for the test rig.
- * Karl Rotchell, the electrical workshop team leader for his support in completing urgent mechanical works required.
- * Ashley KW Ng, MEng student for working together on MATLAB software to analyze the bearing contact stresses.
- * Dr. Alistair John, The University of Sheffield for his support and fruitful recommendations.

Jasím Hasan AL-Bedhany

NOMENCLATURES

Unless otherwise stated, all units used through this thesis are SI.

σ	Stress (Pa)
P_o	Maximum contact pressure (Pa)
a and b	Half of the contact width (m)
$ au$, $ au_{xy}$,	Shear, orthogonal and unidirectional shear stresses (Pa)
$ au_{max}$	
$\sigma_{1,}\sigma_{2}, \sigma_{3}$	Principal stresses (Pa)
σ_y	Yield stress (Pa)
Ζ	Depth beneath the contact surface (m)
Zrol	Number of bearing roller
L_{10}	Rated bearing life with 90% reliability in million cycles (Cycle)
С	Dynamic load capacity (N)
p_{eq}	Equivalent radial load (Pa)
n	Number of cycles
N, N _f	Number of cycles to failure
е	Life estimation empirical exponent
D	Damage
X_k	Variable depends on loading level
r	Cyclic ratio (number of rotating cycles to number of cycles to failure)
A and B	Constants
W	Exponent depend on fatigue stress amplitude
α	The fraction for crack initiation
β	The fraction of crack propagation
N _I , N _{II}	Number of cycles for crack initiation and propagation respectively
m and n	Contact parameters

S	Bearing raceway survival probability (%)
L_f	Fatigue life (Cycle)
a_o and a_f	Initial and final crack lengths (m).
E	Modulus of elasticity (GPa)
ν	Poisson's ratio
G	The gear ratio of the turbine gearbox
P_{gen}	Power of turbine generator (W)
Н	Number of rows in planetary bearings
ω_{gen}	Rotating speed of the turbine generator (rad/s)
η	Overall drivetrain efficiency
R_D	Ring gear diameter in planetary stage (m)
S _D	Sun gear diameter in planetary stage (m)
Т	Torque (N.m)
R_a	Arithmetic surface roughness
HV	Vickers hardness
HRC	Rockwell Hardness
$U_{\it ud}$, $U_{\it ld}$	The linear velocities of the upper and lower test disc respectively (m/s)
SR	Slipping ratio
AR	Aspect ratio
T_{1}, T_{2}	Upper and lower test disc thickness respectively (m)
R_1, R_2	Upper and lower test disc radii respectively
ρ	Density (kg/m ³)
arphi	Dynamic viscosity (cSt)
h_f	Lubricant film thickness (µm)
k	kinematic viscosity (cP)
θ	Pressure-viscosity coefficient
μ	Friction coefficient

V_{cam}	Tip cam velocity (m/s)
N_{cam}	Cam rotational speed (rpm)
R_c	Cam tip radius (m)
ω_{il}	Impact lever rotational speed (rad/s)
V_{imp}	Impact velocity (m/s)
Meff	Effective impact mass (kg)
d_g	The distance between the radius of gyration and impact lever center (m)
Ι	Angular mass moment of inertia (kg.m ²)
L	Length (m)
k_s	Stiffness parameter (N/m)
E_{imp}	Impact energy (J)
F_i	Impact force (N)
p_{oi}	Maximum contact pressure due to impact (Pa)
μ_{mean}	Mean value of the output
β_{input}	Effect of the input factor
E _{noise}	Error due to noise
SD	Standard deviation
ß	Scale Parameter
х	Shape Parameter
$F_{(pr)}$	probability fraction
t_n	Test number
N_T	Total number of tests
t	Time (s)

ABBREVIATIONS

RCF	Rolling Contact Fatigue
WTGs	Wind Turbine Gearboxes
O&M	Operating and Maintenance
WT	Wind Turbine
WE	Wind Energy
RE	Renewable Energy
LSS	Low-Speed Shaft
РР	Planetary Pin
HSS	High-Speed Shaft
MSS	Medium Speed Shaft
UW	UpWind
DW	Down Wind
WSF	White Structure Flaking
DEAs	Dark Etching Areas
WTGBs	Wind Turbine Gearbox Bearings
WEAs	White Etching Areas
WEBs	White Etching Bands
WECs	White Etching Cracks
SR	Slipping Ratio
R/S	Rolling/Sliding
SCADA	Supervisory Control And Data Acquisition
WTs	Wind Turbines
LRM	Light Reflection Microscope
OD	Over-rolling Direction
WL	White Layer
DZ	Deformed Zone

LEDS	Low Energy Dislocation Structure
FHA	Frictional Heat Accumulation
LEAs	Light Etching Areas
LAB	Low Angle Band
HAB	High Angle Band
FE	Finite Element
EHL	Elastohydrodynamic Lubrication
NREL	National Renewable Energy Laboratory
SRCR	Single-Row Cylindrical Roller bearing
DRCR	Double-Row Cylindrical Roller bearing
SEM	Scanning Electron Microscope
EDX	Energy Dispersive X-ray analysis
WD	Working Distance
HV	Vickers Hardness
AISI	American Iron and Steel Institute
HRC	Rockwell Hardness
SRACBs	Single Row Angular Contact Ball Bearings
DOE	Design Of Experiment
SD	Standard Deviation
PDF	Probability Density Function
EFDA	Energy Fraction of Damage Accumulation
P-M	Palmgren-Miner theory
CTE	Coefficient of Thermal Expansion
DLDR	Double Linear Damage Rule
TF	Transfer Function
LEFM	Linear Elastic Fracture Mechanics
AR	Aspect Ratio

PS Probability of Survival

COD Crack Opening Distance

CONTENTS

A	BSTR	AC	Γ	i
P	UBLIC	САТ	TIONS AND PRESENTATIONS	i
D	EDIC	٩TI	ON	ii
A	CKNC	WI	LEDGMENTS	iii
N	OMEN	ICI	ATURES	iv
A	BBRE	VIA	ATIONS	ix
С	ONTE	NT	S	xi
L	IST O	F FJ	IGURES	xvii
L	IST O	F T.	ABLES	xxviii
1	INTF	ROI	DUCTION	1
	1.1	Ju	ustification of the research	2
	1.2	R	esearch aims and objectives	8
	1.3	TI	hesis layout	10
	1.4	N	1ain novelty key contributions	11
2	LITE	RA	TURE REVIEW	13
	2.1	In	itroduction	13
	2.2	W	/ind turbine gearbox design and Bearings loading	
	2.3	W	/ind turbine gearbox operating and monitoring	19
	2.4	Fa	actors affecting the premature failure of WTG bearings	20
	2.4	.1	Effect of impact and transient loadings	24
	2.4	.2	Compressive contact loading of WTGBs	25
	2.4	.3	Slipping of contact surfaces	
	2.4	.4	Inclusions of bearing steels	30

	2.5	Phenomena asso	ociated with WTGB premature fail	ure 32
	2.6	Bearing damage	features	
	2.6.1	Surface and su	ubsurface microcracks	
	2.6.2	Microstructur	al alterations	
	2.6.3	Theories and r	mechanisms of microstructural alt	erations
	2.7	Rolling Contact F	atigue (RCF)	
	2.8	Theories and me	chanisms of fatigue damage	
	2.9	Test rigs used to	investigate RCF	
	2.10	Fatigue life predi	iction theories	
	2.11	Summary and res	search gap	
3	DAMA	GE INVESTIG	ATION OF FAILED PLANETA	RY BEARINGS62
	3.1	Investigation of f	failed planetary bearings	
	3.2	Stresses induced	in the investigated bearings	
	3.3	Investigation pro	ocedure	
	3.4	Surface investiga	itions	74
	3.4.1	Contact surfac	ce hardness	
	3.4.2	Surface rough	ness	
	3.5	Subsurface inves	tigations	
	3.5.1	Sample section	ning and mounting	
	3.5.2	Sample prepa	ration	
	3.6	Subsurface micro	ostructural observations	
	3.6.1	Butterfly wing	5	
	3.6.2	Subsurface mi	icrocracks	
	3.6.3	Other observa	ations	

	3.7	Bearing failure causes and mechanisms	103
	3.8	Discussion	104
	3.9	Conclusions	106
	3.10	Key findings forward to rig design and testing	107
4	TEST IMPA	RIG DESIGN FACILITATING COMBINED ROLLING, SLIDING CT LOADING	AND 108
	4.1	Design concept development	108
	4.1.1	Compression mechanism	113
	4.1.2	2 Slipping mechanism	116
	4.1.3	3 Impact mechanism	117
	4.2	Test disc design	120
	4.2.1	Material and dimensions	121
	4.2.2	2 Test disc design to avoid the edge stress concentration	123
	4.2.3	B Heat treatment	124
	4.2.4	Surface finishing	125
	4.3	Design calculations	125
	4.3.1	Compressive pressure and stress calculations	126
	4.3.2	2 Slip Ratio and traction force calculations	131
	4.3.3	Assumptions of impact stress calculations	133
	4.3.4	Static and dynamic response of test disc material	134
	4.3.5	5 Theoretical calculations of impact forces and stresses	136
	4.4	Lubrication and lubricant specifications	140
	4.5	Test rig capabilities	141

5	EFFE	CT OF	TESTING PARAMETERS ON THE TEST DISC FATIGUE LIFE.	143
	5.1	Introdu	uction	143
	5.2	Test pa	arameters and variation ranges	146
	5.3	The exp	perimental results and analyses	148
	5.3.	1 Indiv	vidual effects of the study parameters	152
	5	.3.1.1	Effect of compression	153
	5	.3.1.2	Effect of impact	156
	5	.3.1.3	Effect of slipping ratio	160
	5	.3.1.4	Analysis of fully crowned discs	162
	5.3.	2 Inter	ractive effect of the study parameters on disc life	164
	5.3.	3 Effe	ct of slipping and impact under different contact levels	168
	5.3.	4 Effe	ct of surface roughness	170
	5.4	Quanti	tative analysis of the study parameters on test disc life	170
	5.4.	1 Indiv	vidual effects	170
	5.4.	2 Com	bined and interactive effects	171
	5.5	S-N cur	ve of the disc material and disc life prediction	174
	5.6	Discuss	sion	175
	5.7	Key fin	dings	176
6	A NE	W FATI	GUE LIFE PREDICTION METHOD	178
	6.1	Introdu	uction	178
	6.2	Stress-l	based fatigue damage theories and their issues	179
	6.3	New da	amage estimation method	182
	6.4	Assum	ptions and limitations of the model	187
	6.5	Applyir	ng the new method on the conducted tests	188

	6.6	Testin	g the new method using SCADA data	. 190
	6.6.1	. Fati	gue life prediction results	. 192
	6.6.2	2 Effe	ect of operating events on damage estimation	. 197
	6.7	Discus	sion	. 199
	6.8	Key fir	ndings	. 199
7	MICR	OSTR	UCTURAL DAMAGE ANALYSIS OF TEST DISCS	202
	7.1	Test d	isc damage investigation	. 203
	7.1.1	. Sur	face hardness	. 207
	7.1.2	! Sur	face roughness	. 208
	7.1.3	₿ Effe	ect of impact loading on damage propagation	. 210
	7.2	Prepa	ring for subsurface investigations	. 211
	7.3	Dama	ged inclusions and microcracks	. 215
	7.3.1	. Incl	usion damage by separation	. 218
	7.	3.1.1	Effect of compressive loading	. 219
	7.	3.1.2	Effect of the impact stress	. 223
	7.	3.1.3	Effect of Slipping Ratio (SR)	. 224
	7.3.2	2 Sub	surface cracking damage	. 226
	7.	3.2.1	Effect of compressive loading	. 227
	7.	3.2.2	Effect of impact loading	. 231
	7.	3.2.3	Effect of Slipping Ratio (SR)	. 235
	7.4	Invest	igation of the test without impact loading	. 240
	7.5	Invest	igation of fully crowned test discs	. 242
	7.5.1	. Sur	face analyses	. 242
	7.5.2	2 Sub	surface analyses	. 244

7.6 Justification of not producing microstructural alterations	246
7.7 Comparison of test disc and bearing materials	246
7.7.1 Surface and subsurface microcracks as damage initiation sites	249
7.7.2 Testing of accumulative frictional energy hypothesis	251
7.8 Key findings	252
8 CONCLUSIONS AND FUTURE WORK	254
8.1 Conclusions	254
8.1.1 Investigation of the failed planetary bearings	255
8.1.2 Investigated parameters and test discs	257
8.1.3 The new bearing damage estimation and life prediction method (EFDA).	259
8.2 Recommendations for future work	259
8.2.1 Future testing	259
8.2.2 Improving the test rig	261
8.2.3 Improving the WTG design	262
REFERENCES	264
Appendix A	282
Appendix B	287
Appendix C	
Appendix D	293
Appendix E	294
Appendix F	297
Appendix G	301

LIST OF FIGURES

Figure 1-1: (a) Growth of global renewable electricity generation [1]; (b) the top 10 countries and their production of wind energy in GW in 2016 (reproduced from [1])2
Figure 1-2: Wind turbine components showing the details of the gearbox (top) [15]; planetary stage components and their rotations and forces (down) [16]4
Figure 1-3: Rotor torque and speed variations with time during three operating events, start-up (upper), speed up (middle) and normal shutdown [32]7
Figure 1-4: Flowchart of the study progress9
Figure 2-1: Examples of failed inner races of wind turbine gearbox bearings by flaking14
Figure 2-2: Microstructural alterations with their depth and orientations (a) WEC [46]; (b) Dark Etching Region (DER), High Angle Band (HAB) and Low Angle Band (LAB) [34]; (c) butterfly wings
Figure 2-3: Factors affecting wind turbine premature failure
Figure 2-4: (a) Typical gearbox consists of one planetary stage showing the bearings locations (b) torque variation during grid loss and braking events [16]
Figure 2-6: Shear stress distribution under rolling-sliding conditions [111]27
Figure 2-7: Positive and negative slipping ratio
Figure 2-8: Examples of damaged inclusions (a) side separation damage; (b) crack initiated from an inclusion; (c) internally cracked inclusion; (d) inclusion associated with butterfly wing damage feature
Figure 2-9: Contact stress and the number of cycles for the formation of microstructural alterations [164]
Figure 2-10: Zwirlien and Schlicht diagram of microstructural change correlation with contact pressure and the number of rotating cycles [167]
Figure 2-11: Butterfly wings feature and their types (a) double wings; (b) upper wing; (c) lower wing
Figure 2-12: Characterization of butterfly wings with depth [25]

Figure 2-13: Examples of bearing inner race failures [147]. (a) Spalling in early-stage; (b) Spalling in advanced stage; (c) micro-spalls; (d) Smearing; (e) contact corrosion; (f) surface-initiated micro-spalls; (g) surface-initiated spalling; (h) fretting; (i) smearing and skidding
Figure 2-14: Pressure distribution and maximum stresses in the contact region under Hertzian contact pressure of 2.4 GPa on a typical 2 MW planetary bearing
Figure 2-15: Theories of white structure flaking initiation
Figure 2-16: Stages of rolling contact fatigue and microstructural damage associated (adapted from [109],[200] and [191])
Figure 2-17: Typical test rigs used to investigate RCF failure. (a) MPR test rig [115]); (b) real bearing tester; (c) twin disc test rig; (d) thrust loading rig [121]; (e) ball against rod tester [189]; (f) thrust bearing test rig [97],[212]
Figure 3-1: Investigated failed inner races and specimen locations (upwind on the left-hand side and downwind on the right)
Figure 3-2: Spalling damage locations due to misalignment
Figure 3-3: Hertzian contact of two parallel cylinders
Figure 3-3: Hertzian contact of two parallel cylinders
Figure 3-3: Hertzian contact of two parallel cylinders
Figure 3-3: Hertzian contact of two parallel cylinders
Figure 3-3: Hertzlan contact of two parallel cylinders
Figure 3-3: Hertzian contact of two parallel cylinders.

Figure 3-10: Hardness measurements of the regions within and outside the loading zone.
Figure 3-11: Bearing surface roughness variations before and after used in service
Figure 3-12: Surface roughness using non-contact contour GT: (left) out of the contact region and (right) inside the contact region
Figure 3-13: Example of analysis of a dent observed on the UW bearing inner race surface.
Figure 3-14: A butterfly wing observed beneath the dent in the circumferential section79
Figure 3-15: Cutting and numbering of zone 1 specimens80
Figure 3-16: Distribution of damaged inclusions with their depth83
Figure 3-17: Distribution of the investigated inclusions according to inclusion aspect ratio (a) axial direction; (b) circumferential direction
Figure 3-18: Inclination angle of damaged inclusions, (a) distribution with depth; (b) percentages (c) schematic representation of inclusion orientation inside the bearing material bulk
Figure 3-19: Damaged inclusions by separation, (a) in relation to subsurface depth; (b) numbers and percentages of separated inclusions
Figure 3-20: Damaged inclusions by cracking, (a) in relation to subsurface depth; (b) numbers and percentages of cracked inclusions
Figure 3-21: Types of investigated butterfly wings (rolling surface in the top)
Figure 3-22: Examples of butterfly wings showing the associated cracked inclusions (rolling surface in the top and the rolling direction from left to right)
Figure 3-23: Distribution of observed butterfly wings with depth
Figure 3-24: Investigated butterflies (a) distribution according to wing length and depth showing the average length and depth; (b) approximate wing angle and percentage; (c) distribution of wing frequency and length
Figure 3-25: Upper and lower butterfly wing types (a) two butterfly types located at the
same depth; (b) two butterfly types located at different depths (from the circumferential specimen 4 UW bearing)92

Figure 3-26: Double and single butterfly wings (a) double and upper butterfly wings depth \sim 220µm; (b) double and upper butterfly wings depth \sim 230 µm (from the circumferential specimen 6 UW bearing)93
Figure 3-27: Two stages of butterfly wings (a) initiation of a baby butterfly; (b) small wing.
Figure 3-28: Analysis of butterfly inclusion (a) Optical image of the largest investigated butterfly; (b) SEM image of one wing; (c) EDX analysis of the central inclusion
Figure 3-29: Two butterfly wings close to cracks, but not connecting with the crack network (from the circumferential specimen No. 2 UW bearing)
Figure 3-30: Butterfly wing and associated damage and changes (from the circumferential specimen No. 3 DW bearing)
Figure 3-31: EDX analysis of the most dominant inclusion type associated with butterfly wings (from the circumferential specimen No. 4 UW bearing)
Figure 3-32: (a) butterfly wings not connected to the crack network causing flaking; (b) and (c) two features with double wings on each side; (d) and (e) two butterfly wings without central inclusion
Figure 3-33: Over etched specimens showing microcracks (a) and (b) circumferential sections; (c) axial section
Figure 3-34: SEM images showing microcracks initiated in the subsurface region without inclusion
Figure 3-35: Large inclusion unconnected to the crack network in the axial direction 100
Figure 3-36: Crack orientation in axial and circumferential sections (a) and (b) axial sections; (c) and (d) circumferential sections
Figure 3-37: Microstructural alteration features; (a), (b) and (c) WEAs in axial section; (d) WECs in circumferential direction; (e) and (f) WEB in the axial direction
Figure 3-38: Surface and subsurface cracks' role in spalling failure initiation
Figure 3-39: Crack direction changed towards the weak points such as voids and inclusions
Figure 4-1: Main components of rolling/sliding and impact test rig
Figure 4-2: Control panel of the test rig

Figure 4-3: Details of the test rig gears
Figure 4-4: Details of the belt drive mechanism used to rotate the camshaft, without cover (left) and with cover (right)
Figure 4-5: Impact releasing mechanism and extensometer
Figure 4-6: Schematic diagram showing the main parts of the designed test rig 113
Figure 4-7: Main components of the compression mechanism
Figure 4-8: Configuration of test discs and impact head with loading shaft supporting bearing
Figure 4-9: Calibration curve of the test rig load cell
Figure 4-10: Test discs contact showing compression force and pressure distribution (left) and, velocity and traction force (right)
Figure 4-11: Main components of the impact mechanism
Figure 4-12: Camshaft details (left) and cam dimensions (right)
Figure 4-13: Characteristic curves of the cam, displacement curve (top) and impact roller velocity curve at the contact region (down)
Figure 4-14: Impact lever components
Figure 4-15: Flat test discs dimensions (a) Upper disc; (b) lower disc 122
Figure 4-16: Full section and dimensions of crowned and flat test disc (a) upper test disc (b) lower test disc
Figure 4-17: Variation of contact stresses beneath the test disc contact region (a) Hertzian contact stress of 2.40 GPa; (b) Hertzian contact stress of 2.64 GPa
Figure 4-18: Distribution of σx under uniform traction load [195]
Figure 4-19: Variation of shear stress distribution with increasing load and slipping 129
Figure 4-20: Variation of Von-Mises stress distribution with increasing load and slipping.
Figure 4-21: Variation of orthogonal shear stress distribution with increasing load and friction
Figure 4-22: Variation of contact stress with SR under different compressive force levels.

Figure 4-23: Variation of traction coefficient with the slipping ratio [83]
Figure 4-24: Experimental measurement of the test disc response
Figure 4-25: Adding of extensometer to measure the deformation due to impact 136
Figure 4-26: Impact mechanism details (a) cam-impact lever velocities relation (b) impact lever schematic diagram with mass, velocities and mass moment of inertia
Figure 4-27: Variation of impact force and impact energy with test rig rotational speed.139
Figure 4-28: Variation of combined compressive contact stress during one test rig cycle
Figure 4-29: Fill in and emptying the test rig oil (a) the fill-in plug; (b) the drain plug; (c) the oil level mark
Figure 4-30: Drain holes to empty the test rig lubricant
Figure 5-1: Number of cycles to failure (N) under different test parameter levels
Figure 5-2: Normality test curve of the test results
Figure 5-3: Box and whisker plot for assessing the response normality of cycles to failure.
Figure 5-4: Probability distribution of the test results
Figure 5-5: Individual mean effect of the tested factors on the line contact tests
Figure 5-6: Mean effect of compressive loading without stress concentration using, (a) linear and exponential fitting curves extended out of the test range; (b) linear mean plot; (c) exponential mean and variation ranges
Figure 5-7: Mean effect of compressive stresses on test disc life due to combined compression of impact and compressive loading with stress concentration
Figure 5-8: Individual mean effect of impact force on test disc life (a) impact force only without stress concentration; (b) combined force corresponding to impact with stress concentration
Figure 5-9: Effect of impact (a) variation trends of S-N curves under four impact levels: (b)
variation range of the number of cycles to failure
Figure 5-10: Individual effect of impact on the test disc life using flat discs

Figure 5-12: Effect of slipping (a) variation trends of S-N curves under four levels of slipping ratios; (b) variation range of the number of cycles to failure
Figure 5-13: Effect of the study parameters on crowned test disc life 163
Figure 5-14: Interaction effect of slipping ratio and compressive loading on the number of cycles to failure
Figure 5-15: Interaction effect of impact stress and compressive loading on the number of cycles to failure
Figure 5-16: Interaction effect of slipping ratio and impact stress on the number of cycles to failure (a) 3D plot; (b) 2D plot
Figure 5-17: Effect of slipping with increasing the contact stress
Figure 5-18: Effect of impact loading under different contact pressure
Figure 5-19: Modified S-N curve of the test disc material using linear and exponential approximations
Figure 6-1: Comparison of five damage estimation methods under the same cyclic ratio.
Figure 6-2: Damage energy in a balancing energy system
Figure 6-3: Calculating an equivalent number of cycles using the area under the S-N curve
Figure 6-4: Flowchart of the new damage estimation method
Figure 6-5: Characteristic curves of a 1.7 MW wind turbine (a) power curve; (b) planet speed curve
Figure 6-6: S-N curve of the bearing material [238]191
Figure 6-7: Operating wind speed distribution using SCADA data for (a) for the first year; (b) for the second year
Figure 6-8: First-year results of damage using SCADA data (a) accumulative damage using P-M theory and the new method; (b) wind speed distribution
Figure 6-9: Second-year results of damage using SCADA data (a) accumulative damage using P-M theory and the new method; (b) wind speed distribution
Figure 6-10: Damage accumulated curves for two years using SCADA data

Figure 6-11: Accumulative damage using standard wind speed occurrence during a year (a) Damage accumulation; (b) Standard wind speed distribution
Figure 6-12: Torque fluctuation during three events in 750 kW wind turbines
Figure 7-1: Sample sectioning of a test disc for surface and subsurface investigation 203
Figure 7-2: Failed upper and lower test discs classified into four groups depending on the SR
Figure 7-3: Radial crack introduced if impact location in an incorrect position(T11left, T13 right)
Figure 7-4: Surface damage of tests without stress concentration
Figure 7-5: Damage of test disc without impact loading (T6B)
Figure 7-6: Comparison of surface damage feature under different SR
Figure 7-7: Hardness variation of test discs before and after the test
Figure 7-8: Upper and lower test discs average measured surface roughness
Figure 7-9: Circumferential surface roughness of the elliptical contact test disc 209
Figure 7-10: Alicona scanner analyses of investigating the effect of impact on damage depth (a) T6B (no impact); (b) T6 (impact stress=435 MPa); (c) T6A (impact stress=705 MPa).
Figure 7-11: Subsurface damage features of two failed test discs (a) from T6A; (b) from T7.
Figure 7-12: Subsurface stress distributions of the test discs under contact pressure of 2400 MPa and, 6.7% and 22 % traction coefficients. Von-Mises stress (top), maximum shear (middle) and orthogonal shear (down)
Figure 7-13: Examples of damage features observed (a) inclusion damaged by upper separation; (b) inclusion damaged by cracking; (c) surface and subsurface microcracks.
Figure 7-14: Damaged and undamaged inclusions (a) damaged by cracking close to its boundaries; (b) damaged by separation; (c) and (d) undamaged inclusions
cracks

Figure 7-16: Damaged inclusions in the five investigated test discs (a) by separation; (b) by Figure 7-17: Damaged inclusions by separation (a) near the spalling area; (b) different separations at the same depth; (c) upper separation (from T6A); (d) Lower and side Figure 7-18: Examples of inclusion separation damage (a), (b) and (c) from T14; (d), (e) and Figure 7-19: Effect of compressive load on damaged inclusion by separation (a) test T14 (compression stress=2410 MPa); (b) test T6 (compression stress=2603 MPa).....221 Figure 7-20: Examples of undamaged and damaged inclusions (a) undamaged inclusion from T6; (b), (c) and (d) damaged inclusions by separation from T6; (e) undamaged inclusion from T14; (f) damaged inclusion by separation from T14...... 222 Figure 7-21: Effect of impact on separation type (a) test T6 (impact stress=407.6 MPa); (b) Figure 7-22: Examples of damaged inclusions by separation under the effect of impact (a) and (c) close to contact surface (from T6); (b) and (d) lower separation appears in a deep Figure 7-23: Effect of increasing SR on damaged inclusion by separation (a) T7 (SR=6.71%); Figure 7-24: Crack and separation damage of inclusions (a) From T7; (b) from T7A...... 226 Figure 7-25: Damaged inclusion (a) in the same region have different damage features in Figure 7-26: Inclusion cracking damage due to compressive loading (a) From T14 (b) from T6 (c) two inclusions with different damage features; (d); (e) and (f) inclusion cracking Figure 7-27: Comparison of cracking damage with depth due to increasing compressive load (a) test T14 (compressive stress=2410 MPa); (b) test T6 (compressive stress=2603 MPa). Figure 7-28: Effect of increasing compressive load on inclusion damage by cracking (a) test

Figure 7-29: Hypothesis: Stresses and their directions may cause damage initiation...... 231

Figure 7-30: Damaged inclusions by cracking due to the effect of impact loading (a) close to contact surface (from T6A); (b) defects in the axial section (from T6); (c) kinked cracks (from T6 axial); (d), (e) and (f) defects and microcracks near damaged inclusions
Figure 7-31: Subsurface microcracks connection to produce crack network (a) from T6; (b) from T6A
Figure 7-32: Effect of impact on damage by cracking (a) test T6 (impact stress=407.6 MPa); (b) test T6A (impact stress=705 MPa)
Figure 7-33: Effect of impact on inclusion cracking damage (a) test T6 (impact stress= 407.6 MPa); (b) test T6A (impact stress=705 MPa)
Figure 7-34: Examples of damaged inclusions by cracking (a) upper cracked (from T7); (b) internally micro-cracked (from T7); (c) internally cracked in the shallow region (from T7A); (d) Internally cracked (from T7A)
Figure 7-35: Sample from T7A showing the possible initiation of microstructural alteration.
Figure 7-36: Effect of SR on damage by cracking (a) test T7 (SR=6.71%); (b) test T7A (SR=22.82%)
Figure 7-37: Effect of SR on cracking type (a) test T7 (SR=6.71%); (b) test T7A (SR=22.82%).
Figure 7-38: Damage region of T6B (without impact loading)
Figure 7-39: Subsurface investigation of T6B (a) microcracks with depth; (b) damaged inclusion by separation; (c) damaged inclusion by cracking
Figure 7-40: Effect of test parameter levels on surface damage feature
Figure 7-41: Subsurface damage features from fully crowned tests (a) and (b) T1P; (c) and (d) T2P; (e) T3P; (f) T4P245
Figure 7-42: Long inclusions observed in test disc material in the axial direction
Figure 7-43: Defects on the inclusion borders outside the damage affected area (a) in circumferential direction; (b) in axial direction
Figure 7-44: Compression tests of the bearing and test disc materials
Figure 7-45: S-N curves of the test disc material (top) and the real bearing material (down) [238]

Figure 7-46: Surface and subsurface cracks may not initiate from inclusions	250
Figure 7-47: Example of damaged inclusion analysis using EDX technique	250

Figures of the Appendices

Figure E- 1: Test disc material static response
Figure E- 2: Test disc material dynamic response. Flat discs (top) and fully crowned discs (bottom)
Figure E- 3: Fully crowned test disc stiffness within the test rig assembly
Figure G. 1: Flanged groove synchronous timing pulley and belt
Figure G. 2: Modification of impact mechanism camshaft

LIST OF TABLES

Table 2-1: Typical wind turbine operating events and their effects.	25
Table 2-2: Chemical compositions of two bearing steels [146].	31
Table 3-1 Wind turbine gearbox specifications and working hours.	63
Table 3-2: Measured dimensions of the inner races and rollers (all dimensions in mm).	65
Table 3-3: Chemical composition of the bearing material (AISI 52100/100Cr6) [37]	65
Table 3-4: Mechanical properties of the bearing material [37][164][146]	65
Table 3-5: Quantitative variation of maximum subsurface stresses and locations contact pressure and surface traction coefficient	with 71
Table 3-6: Percentages of depth and stress variations with the variation of contact pres	sure
and traction coefficient	71
Table 3-7: Details of grinding and polishing processes.	81
Table 3-8: Different damage forms initiate from inclusions	82
Table 4-1: Bearings of the test rig and specifications (dimensions in mm)	115
Table 4-2: Chemical analysis of test disc material	121
Table 4-3: Test disc radii and the corresponding slipping ratio	121
Table 4-4: Heat treatment procedure of the test disc material	125
Table 4-5 Mechanical properties of the test discs material [56][146]	126
Table 4-6: Film thickness to roughness ratios under different loading conditions	133
Table 4-7: Dynamic test parameters.	135
Table 4-8: Parameters of the designed impact mechanism	138
Table 4-9: Available test ranges of the study parameters.	142
Table 5-1: DOE analysis methods and their advantages and disadvantages	144
Table 5-2: Testing parameter levels and variation ranges	147
Table 5-3: Test parameter levels and the number of cycles to failure	149
Table 5-4: Life estimation equations and their percentage of error.	171
Table 5-5: Experimental and estimated test disc life and their percentage of error	173

Table 5-6: Disc life estimation using RMS technique and its percentage of error 174
Table 6-1: Stress based life prediction theories. 180
Table 6-2: Life prediction and percentage of error of the conducted tests
Table 7-1: Parameter levels of test discs used for microstructural damage investigation.
Table 7-2: Effect of increasing the studied factors on inclusion damage by cracking 226
Table 7-3: Effect of increasing the studied factors on inclusion damage by cracking 239
Table 7-4: Results of applying accumulative friction energy formula for the tests
Table A-1: Useful dimensions and specifications of the wind turbine gearbox

AGREEMENT DETAILS OF FIGURES REUSED FROM OTHER PUBLISHED

Figure No.	Page No.	Reference No.	Agreement License No.	Date	Notes
Figure 1.1 a	2	6		June 10 th 2020	Agreement received by an email from secretariat@ren21.net
Figure 1.2	4	21		May 27 th 2020	Agreement received by an email from Rob.Finger@nrel.gov
Figure 1.3	7	36		May 27 th 2020	Agreement received by an email from <u>Rob.Finger@nrel.gov</u>
Figure 2.2 a	15	49	Springer 4836571109124	May 26 th 2020	
Figure 2.2 b	15	38	ASTM 4837250946795	May 27 th 2020	
Figure 2.4 b	18	21		May 27 th 2020	Agreement received by an email from <u>Rob.Finger@nrel.gov</u>
Figure 2.5	23	25	600014662	May 27 th 2020	
Figure 2.9	36	164	Springer 4836661351759	May 26 th 2020	
Figure 2.10	36	167	ASTM 4837251257165	May 27 th 2020	
Figure 2.12	44	30		June 29 th 2020	permission from the corresponding author Juergen.Gegner@skf.com
Figure 2.17 a	52	116	4837811506665	May 28 th 2020	
Figure 2.17 d	52	122	Elsevier 4836611462850	May 26 th 2020	
Figure 2.17 e	52	189	Elsevier 4836630519990	May 26 th 2020	
Figure 2.17 f	52	99	https://		Direct agreement from the copyright website for thesis use.
Figure 4.18	128	195	acrobat.adob m/id/	e.co July 20	From PLSclear website.
Figure 4.23	132	3	urn:aaid:sc:A 5dd8da- c9fc-4b41-8e 50fb1fac840	P:42 e1-0	Direct agreement from https://creativecommons. org/licenses/by-nc- nd/2.0/uk/
Figure 6.6	191	258	600015776	June 4 th 2020	

WORKS

https:// acrobat.adobe.co m/id/ urn:aaid:sc:AP:42 5dd8dac9fc-4b41-8ee1-0 50fb1fac840