
i

TCP Versus UDP Performance In Term Of Bandwidth

Usage

A thesis submitted to the Faculty of Information Technology in partial

fulfilment of the requirement for the degree

Master of Science (Information Technology)

Universiti Utara Malaysia

By

Mostfa M. Kaytan

Copyright © Mostfa M. Kaytan, 2010. All Rights Reserved.

ii

PERMISSION TO USE

In presenting this thesis in partial fulfilment of the requirements for a

postgraduate degree from University Utara Malaysia, I agree that the University Library

may make it freely available for inspection. I further agree that permission for copying of

this thesis in any manner, in whole or in part, for scholarly purposes may be granted by

my supervisor, in his absence, by the Dean of the Faculty of Information Technology. It

is understood that any copying or publication or use of this thesis or parts thereof for

financial gain should not be allowed without my written permission. It is also understood

that due recognition shall be given to me and to University Utara Malaysia for any

scholarly use which may be made of any material from my thesis.

Request for permission to copy or to make use of material in this thesis, in whole or in

part should be addressed to:

Dean of Research and Postgraduate Studies

College of Arts and Sciences

Universiti Utara Malaysis

06010 UUM Sintok

Kedah Darul Aman

Malaysia

iii

ABSTRACT

This project is mainly about how to establish User Datagram Protocol (UDP) and

Transmission Control Protocol (TCP) connection in the same network simulation. For

that, we will be using four types of TCP which are TCP Tahoe, TCP Reno, TCP

NewReno and TCP Vegas. From there, we are going to differentiate them in term

bandwidth usage and define how it works and describes several effect that occurred

when its work together. In order to create the topology and run the protocols, we use

Network Simulator 2 (NS2) to create and run the coding. To run the codes, we use

command which use a few code in running the coding. Then we will get a topology,

which is the flow of the packet within the source and destination, base on the coding. A

graph also appears after the command.

iv

ACKNOWLEDGMENTS

In the name of Allah, Allah says:

((Work; so Allah will see your work and (so will) His Messenger and the believers ;))

 (Al-Quran: Tawba-105)

Conducting this project marks the end of an interesting and eventful journey. It

could not have been achieved without the academic professional and personal support of

the following people.

Firstly, I would like to extend special thanks to my supervisor, Assoc. Prof. Hatim

Mohamad Tahir, of the Faculty of Information Technology, University Utara Malaysia

(UUM) for tirelessly offering his encouragement, wisdom and experience, who provided

me with constant guidance and constructive criticism throughout all stages of my

research. I would like to thank my evaluator Mr. Rosmadi B Bakar for his suggestion and

his encouragement. I would like to thank my friend Dr. Mohammed M. Kadhum for his

consultation and his suggestion regard the research results. As well, thanks to the

Ministry of Higher Education Iraq for the financial support awarded to me.

Secondly, I am grateful to all FTM lecturers for their guidance and unconditional support,

also for all UUM staff that provided me with a warm hospitality and assistance during my

time in Sintok.

v

Thirdly, Much appreciation to my friends, who have helped me to get accustomed to the

culture and traditions, and have showed me a magnificent meaning of friendship at every

crossroad. Their warmth and empathy will ever never be forgotten.

Finally, a very big thank must go to all my family members for their immeasurable

support. I wish to acknowledge my parents for their unwavering support and confidence

in me. There are not enough words for me to express my feelings of deep appreciation to

my parents. I would like to dedicate this thesis to my wife and daughters who lovely

encouraged and supported me through all my study. Many thanks as well as to my

brothers Bsam and Ali for their assistances and do all my business in Iraq during the time

I m doing my Master.

For those all, I would like to say

"لا محدودلودعمكم ا ودعائكم لي شكرا لثقتكم بي"

vi

Contents

PERMISSION TO USE...…………. ……………………………………………..………ii
ABSTRACT…………………………......……………………………………................. iii
ACKNOWLEDGMENT………… …… ……………………………………...................iv
DEDICATION………………………………………………………………….................v
CONTENTS …………………………. ……………………………………………….....vi
LIST OF FIGURES ……………………………………………………………………...ix
ABBREVIATIONS...………………………….………………………………………….x

CHAPTER ONE: INTRODUCTION ... 1

1.1 Introduction ... 1

1.2 Work Background ... 4

1.2.1 Transmission control protocol (TCP) ... 4

1.2.2 TCP Reno ... 5

1.2.3 User datagram protocol (UDP).. 6

1.2.4 Network Simulation -2 ... 7

1.3 Problem Statements .. 9

1.4 Research Questions ... 10

1.5 Research Objectives .. 10

1.6 Scope and limitation…………………...……………………………………………………..11

1.7 Significant of Study .. 11

1.8 Definition of Terms... 12

1.9 Organization of the Thesis .. 13

CHAPTER TWO: LITERATURE REVIEW ... 14

2.1 Introduction ... 14

2.2 Interaction between TCP and UDP flows in Wireless .. 15

2.3 Multi-hop UDP with TCP flow... 16

2.4 TCP Vegas vs. TCP Reno ... 18

2.5 TCP Startup Performance in Large Bandwidth .. 19

vii

2.6 A Comparative Analysis of TCP Tahoe, Reno, New-Reno, and Vegas 20

2.6.1 TCP Tahoe.. 20

2.6.2 New-Reno ... 21

2.6.3 Vegas .. 22

2.6.4 TCP RENO ... 22

2.7 TCP Tahoe /Reno .. 24

2.8 TCP vs. UDP Performance Evaluation for CBR Traffic on Wireless Multihop

 Network ………….…………….. 24

2.9 Behavior of TCP in variable-bandwidth environments .. 25

2.10 Reno TCP .. 27

CHAPTER THREE: RESEARCH METHODOLOGY ... 29

3.1Introduction .. 29

3.2 Description of experiments ... 30

3.3 Simulation steps .. 31

3.3.1 Problem Definition ... 31

3.3.2 Design the Simulation Model ... 32

3.3.3 Configuration the Simulation Model .. 32

3.3.4 Design the Experiments ... 32

3.3.5 Conduct the Experiments ... 33

3.3.6 Analysis & Evaluation the Results ... 33

CHAPTER FOUR: SIMULATION RESULTS ... 34

4.1 TCP Tahoe Simulation results: ... 34

4.1.1 TCP Tahoe with 200Kb rate of CBR ... 35

4.1.2 TCP Tahoe with 4Mb rate of CBR ... 36

4.2 TCP Reno Simulation results: ... 36

4.2.1 TCP Reno with 200Kb rate of CBR ... 36

4.2.2 TCP Reno with 4Mb rate of CBR .. 36

4.3 TCP Newreno Simulation results: .. 37

viii

4.3.1 TCP Newreno with 200Kb rate of CBR ... 37

4.3.1 TCP Newreno with 4Mb rate of CBR .. 38

4.4 TCP Vegas Simulation results: ... 38

4.4.1 TCP Vegas with 200Kb rate of CBR ... 38

4.4.2 TCP Vegas with 4Mb rate of CBR ... 39

CHAPTER FIVE: DISCUSSION AND CONCLUSION .. 40

5.1 Introduction ... 40

5.2 Discussions of the finding ... 41

5.3 Implications of the study ... 42

5.4 Limitations of the study .. 42

5.5 Conclusion .. 43

REFERENCES ... 44

Appendix A ... 50

Appendix B ... 51

Appendix C ... 86

ix

LIST OF FIGURE

FIGURE 1.1 TCPIIP PROTOCOL SUITES .. 1

FIGURE 1.2 DISCREET EVENT SCHEDULER .. 8

FIGURE 1.3 THE BASIC SIMULATION OBJECTS IN NS AND THEIR INTERCONNECTIONS 9

FIGURE 2.1 THE TCP VS UDP SCENARIO ... 16

FIGURE 2.2 EXAMPLE OF UDP INTER PACKET DELIVERY TIME IN THE STATIC MULTI-HOP

SCENARIO ... 17

FIGURE 3.1 SIMULATION TEST-BED MODEL .. 29

FIGURE 3.2 SIMULATION MODEL ... 32

FIGURE 4.1 THE BANDWIDTH USAGE OF TCP TAHOE WITH 200KB OF UDP 34

FIGURE 4.2 THE BANDWIDTH USAGE OF TCP TAHOE WITH 4MB OF UDP 35

FIGURE 4.3 THE BANDWIDTH USAGE OF TCP RENO WITH 200KB OF UDP 36

FIGURE 4.4 THE BANDWIDTH USAGE OF TCP RENO WITH 4MB OF UDP 36

FIGURE 4.5 THE BANDWIDTH USAGE OF TCP NEWRENO WITH 200KB OF UDP 37

FIGURE 4.6 THE BANDWIDTH USAGE OF TCP NEWRENO WITH 4MB OF UDP 38

FIGURE 4.7 THE BANDWIDTH USAGE OF TCP VEGAS WITH 200KB OF UDP 38

FIGURE 4.8 THE BANDWIDTH USAGE OF TCP VEGAS WITH 4MB OF UDP 39

x

ABBREVIATIONS

TCP Transport Control Protocol

UDP User Datagram Protocol

FTP File Transfer Protocol

CBR Constant Bit Rate

NS Network Simulation

NAM Network Animator

TCL Tool Command Language

 OTCL Object extension of TCL

HTTP Hypertext Transfer Protocol

POP Post Office Protocol

SMTP Simple Mail Transfer Protocol

ATM Asynchronous Transfer Mode

DSSS Direct-Sequence Spread Spectrum.

1
Chapter 1: Introduction

CHAPTER ONE

INTRODUCTION

1.1 Introduction

Transmission Control Protocol/Internet Protocol (TCP/IP), the most common of

all network protocol suites, used for communication on the Internet. TCP/IP is a

hierarchical protocol made up of interactive layers (as shown in Figure I) each layer has

a specific functionality. (Ross, 2008)

Figure 1.1 TCPIIP Protocol Suite

According to (Ross,2008) application layer are placed at the top of TCP / IP stack,

it defines protocols such as (FTP, HTTP, Telnet and so on) for application

communication. These protocols are acting as interface for the actual application

program. The transport layer follows the application layer. TCP/IP makes available two

distinct transport layer protocols to the application layer: Transmission Control Protocol

(TCP) and User Datagram Protocol (UDP). The transport layer follows the application

2
Chapter 1: Introduction

layer. TCP/IP makes available two distinct transport layer protocols to the application

layer: Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). The

most popular transport layer protocols which have been used in the internet consist of

two, TCP (Transmission Control Protocol) and UDP (User Datagram Protocol). TCP is

probably the most commonly used protocol, simply because it is used for so many

applications such as HTTP, POP, SMTP, etc. TCP is a protocol which guarantees that

the receiver will receive exactly what the sender sent - there will be no errors, it will be

in the correct order, everything will work just fine (Kurose and Ross, 2005).

Despite the recent explosion in availability of broadband Internet access, the majority of

home users have relatively small-bandwidth links in comparison with the sites hosting

desired content (Zakhor, 2003).

Applications using TCP, such as web-browsers, ftp, and various P2P programs,

dominate most of the Internet traffic today. In many cases the last-hop access links are

bottlenecks due to their limited bandwidth capability with users running many

simultaneous network applications (Zakhor, 2003).

 UDP is similar to TCP in that it is a protocol for sending and receiving packets

across a network, but with two major differences. First, it is connection less. This means

that one program can send off a load of packets to another, but that's the end of their

relationship. The second might send some back to the first and the first might send some

more, but there's never a solid connection. If one just stops sending packets that's fine

In this project we will use network simulation 2(NS2) to create topology and run

codes. We believe that once the basics of NS2 are grasped, the readers can go through

3
Chapter 1: Introduction

other documentations, and readily understand the details of other NS2 components

(Hossain, 2009).

According to (Postel, 1981) the transport protocol used by the majority of Internet

traffic is the Transmission Control Protocol (TCP) which lacks the ability to distinguish

between packet losses due to errors and those due to network resource contention

(congestion).

The protocol's goal is only to recover from packet losses by retransmission, so

distinguishing the causes of losses isn't required. By design, standard TCP

implementations assume congestion as the cause of all packet losses and slow their

sending rates in response (AlIman, Paxson,and Stevens, 1999).

According to (Jacobson, 1988) the motivation for slowing down for perceived

congestion was that, at the time, there were several congestion collapse events during

which the Internet was unusable, and so fixing TCP to send more conservatively in the

presence of losses was important. This was not an indefensible decision on the TCP

designers' part given that at the time most Internet links were wired, so it was a safe

assumption that congestion caused the vast majority of packet losses. This assumption,

however, leads to suboptimal performance when TCP is used over networks where

packets are dropped due to corruption and in which corruption losses are independent of

the congestion level. Since most applications in common use today (web, email, file

transfer) run over TCP, we see them perform more poorly than necessary over wireless

networks (Eddy, 2004).

4
Chapter 1: Introduction

1.2 Work Background

1.2.1 Transmission control protocol (TCP)

TCP is the dominant protocol used in the Internet today, since it is the transport

protocol that is responsible for the transmission of around 90% of the Internet traffic

(Allman and Falk, 1999). The IETF is the main standardization organization that is

concerned with TCP, and unlike other standardization Organization (ATM), all their

standards are free and available on-line According to (Forouzan, 2000).

 TCP has several responsibilities. Firstly, it is responsible for creating a process-

to-process (program-to-program) communication and in order to accomplish this, TCP

uses port numbers, Three-Way Handshaking for connection establishment, and Four-Way

Handshaking for connection termination. Secondly, the responsibility of TCP is to create

a flow and error control mechanism at the transport layer. TCP uses a sliding window

protocol to achieve flow control. It uses the acknowledgment packet, time-out, and

retransmission to achieve error control. TCP is also called a connection-oriented, reliable

transport protocol and thus adds connection-oriented and reliability features to the

services of IP.

According to (Huston and Telstra, 2009) Although TCP attempts to discover the delay

bandwidth product of the connection, and attempts to automatically optimize its flow

rates within the estimated parameters of the network path, some estimates will not be

accurate, and the corresponding efforts by TCP to optimize behavior may not be

completely successful.

The main responsibility of TCP is to avoid congestion in the network and to adapt the

transmission rate of packets to the available bandwidth. Modern implementations of TCP

5
Chapter 1: Introduction

contain four congestion control algorithms: slow start, congestion avoidance, fast

retransmit, and fast recovery (Stevens, 1997). This end-to-end congestion control

mechanisms of TCP have been a critical factor in the robustness of the Internet (Floyd

and Fall, 1999).

TCP is a reliable data transfer protocol used widely over the Internet for numerous

applications, from FTP to HTTP. The current implementation of TCP Reno/NewReno

mainly includes two phases: Slow-start and Congestion avoidance (Wang, et al, 2002).

1.2.2 TCP Reno

New versions of TCP have been proposed to improve data transmission

performance. The first version of TCP defined the basic structure of TCP, namely, the

window-based flow control scheme and a coarse grain timeout timer. The second version,

TCP Tahoe, added the congestion avoidance scheme. Two years later saw the

introduction of a third version, TCP Reno, which retained all the enhancements in TCP

Tahoe (fast retransmit, slow start, and congestion avoidance), but also incorporated a new

algorithm, the fast recovery algorithm (Hassan and Jain, 2004).TCP Reno has become the

most popular version of TCP today. However this version predicts available bandwidth

by detecting the packet loss, which causes network congestion and unfair bandwidth

usage. The main reason TCP Reno remains in use is because it has an aggressive control

scheme that expands and covers more bandwidth until the transmitted packets are lost

(Lai and Yao, 2000).

According to (Kurose and Ross, 2005) Fast Recovery algorithm in TCP Reno

cancels the slow start phase after a triple duplicate ACK and remains in the congestion

6
Chapter 1: Introduction

avoidance phase while dropping the congestion window by half. The philosophy behind

canceling slow start in this case is that even though a packet has been lost, the arrival of

three duplicate ACKs indicates that some segments have been received at the sender.

Thus, unlike the case of a timeout, the network is showing itself to be capable of

delivering at unlike the case of a timeout; the network is showing itself to be capable of

delivering at least some segments, even if other segments are being lost due to

congestion.

1.2.3 User datagram protocol (UDP)

UDP is a simple, connectionless transport protocol (Stevens, 1994) .UDP does

just about as little as a transport protocol can. Aside from the multiplexing /

demultiplexing function and some light error checking, it adds nothing to IP. In fact, if

the application developer chooses UDP instead of TCP, then the application is talking

almost directly with IP. UDP takes messages from application process, attaches source

and destination port number fields for the multiplexing/demultiplexing service, adds two

other fields of minor importance, and passes the resulting "segment" to the network layer.

The network layer encapsulates the segment into an IP datagram and then makes a best-

effort attempt to deliver the segment to the receiving host. If the segment arrives at the

receiving host, UDP uses the port numbers and the IP source and destination addresses to

deliver the data in the segment to the correct application process. Note that with UDP

there is no handshaking between sending and receiving transport layer entities before

sending a segment. For this reason, UDP is said to be connectionless (Kurose and Ross,

2005).

7
Chapter 1: Introduction

1.2.4 Network Simulation-2(NS2)

The Network Simulation Experiments Manual. As networking systems have

become more complex and expensive, hands-on experiments based on networking

simulation have become essential for teaching the key computer networking topics to

students and professionals. The simulation approach is highly useful because it provides a

virtual environment for an assortment of desirable features such as modeling a network

based on specified criteria and analyzing its performance under different scenarios

(Peterson and Davide, 2003).

NS2 is an open-source event-driven simulator designed specifically for research in

computer communication networks. Since its inception in 1989, NS2 has continuously

gained tremendous interest from industry, academia, and government. Having been under

constant investigation and enhancement for years, NS2 now contains modules for

numerous network components such as routing, transport layer protocol, application, etc.

To investigate network performance, researchers can simply use an easy-to-use scripting

language to configure a network, and observe results generated by NS2. Undoubtedly,

NS2 has become the most widely used open source network simulator, and one of the

most widely used network simulators (Hossain, 2009).

Ns is an object-oriented simulator written in C++ with an object-oriented TCL

(OTCL) interpreter as a front-end. C++ is used for detail protocol implementation and

OTCL for simulation configuration. One drawback of combining two languages is that

debugging becomes more complicated than with one language alone (Mattsson, 2004).

According to (Aggarwal, 2003) the figure 1.2 shows the overall functioning of NS-2 simulation

tool. NS-2 is an object-oriented network simulator written in C++ and OTCL. Simulation

8
Chapter 1: Introduction

topologies are written in TCL (tool command language) language, which are linked with

background C++ simulator modules using OTCL linkage. NS is primarily useful for simulating

local and wide area networks. As it can be observed that the functionality changes have to be

carried out on ns-classes which are written in C++.

Figure 1.2:Discreet Event Scheduler

The basic simulator objects that ns include are Nodes, Links, Agents, and

Applications. Nods and Links define the network topology. Agent represent end points

where network layer packets are constructed or consumed and are commonly used to

implement protocols at various levels. Applications are traffic sources that send and

receive data. The objects are connected to each other in a layered fashion as seen in

figure1.3 (Chohan, 2006).

9
Chapter 1: Introduction

Link Link

Figure 1.3- The basic simulation objects in ns and their interconnections

1.3 Problem Statements

Computer networks such as Internet are costly in terms of building and operating.

Therefore it is preferred to study the network protocols performance in simulated

environment. The performance of the network may not be as good as the one estimated

before the installation and this may sometimes lead to changing of the network

characteristics. Network simulators such as NS2, GLOMOSIM, and SWANS help in

estimating the performance of network protocols before implementing theses protocols in

real environment. In this project we use NS2 to study the TCP and UDP protocols

performance in terms of bandwidth usage. This study helps in taking a proper decision

about actual establishment of the network.

1.4 Research Questions

This project will attempt to answer the following questions:

Application

Agent

Node

Application

Agent

Node Node

10
Chapter 1: Introduction

1. How much bandwidth that usage by protocols in transport layer, the

transmission Control Protocol or User Datagram Protocol when they share

same link and which one consume the bandwidth more than other?

2. How we can measure the consuming bandwidth in each protocol in transport

layer by using the network simulation?

1.5 Research Objectives

Networking systems have become more complex and expensive, hands-on

experiments based on networking simulation have become essential for teaching the key

computer networking topics to students and professionals. The simulation approach is

highly useful because it provides a virtual environment for an assortment of desirable

features such as modeling a network based on specified criteria.

The implement of this thesis will try to achieve the below objectives:

1. To identify which protocol is consuming the bandwidth more than the other in

transmission layer.

 2. To measure the consuming bandwidth.

 3. To analyze the protocols theoretically and through simulation.

1.6 Scope and Limitations

This research will be limiting by the following boundaries:

1.The establish connection efficiency. This will be when we created the code for

TCP and UDP agent and sink

11
Chapter 1: Introduction

2. Create the topology and run the protocols, this refer to simulation arrangement.

 3. Create and run the coding, when we run our code up on NS2

 4. We are using network simulator to define the result.

1.7 Significant of Study

This study tries to compare the evaluation of performance TCP and UDP in usage

bandwidth. In our project we will use the simulation network. Performance evaluation is

a critical component of systems research that allows the evaluation of new ideas,

identification of problems and bottlenecks and optimization of existing systems. There

are three general approaches to performance evaluation:

 1. Prototyping: build it (or a scaled down version of it) and see how it works.

 2. Analytical modeling: build a mathematical model of it and use it to analyze the

 system.

 3. Simulation: build a software model of the system. Prototyping is often not

 feasible, or time consuming especially for large scale systems.

It also provides limited controllability and observability. Similarly, analytical

modeling cannot capture highly complex systems. Thus, simulation has emerged as an

attractive alternative that is heavily used in performance evaluation of computer systems.

Network simulation enables us to predict behavior of a large-scale and complex

network system such as the Internet at low cost under different configurations of interest

and over long periods. Many network simulators, such as NS-2, SSFNet, Opnet, Qualnet,

etc., are widely available. We will use NS-2 for this project. NS-2 is a discrete event

12
Chapter 1: Introduction

simulator written in C++, with an OTCL interpreter shell as the user interface that allows

the input model files (TCL scripts) to be executed. Most network elements in NS-2 are

developed as classes, in object-oriented fashion. The simulator supports a class hierarchy

in C++, and a very similar class hierarchy in OTCL. The root of this class hierarchy is the

TCLObject in OTCL. Users create new simulator objects through the OTCL interpreter,

and then these objects are mirrored by corresponding objects in the class hierarchy in

C++. NS2 provides substantial support for simulation of TCP, routing algorithms,

queuing algorithms, and multicast protocols over wired and wireless (local and satellite)

networks, etc. It is freely distributed, and all source code is available. In the first project,

you will not need to worry about the internals of NS-2.

1.8 Definition of Terms

For clarity of understanding the following terms will be defined. The definitions

given will be operational definitions that are pertinent to this study and the software used

to conduct the research.

• TCP: (Transmission Control Protocol) is the main transport protocol utilized In IP

networks. The TCP protocol exists on the Transport Layer of the OSI Mode.

• TCP Reno: TCP Reno advanced the Fast Transmit, where three duplicate

acknowledgments signaled a re-transmittance without a timeout, with Fast

Recovery. Fast Recovery meant that once a certain threshold of acks were received

the window size was decreased by half, rather than starting over with slow start.

Only during timeout does it go back into slowstart(Chohan, 2006).

13
Chapter 1: Introduction

• TCP New Reno: TCP New Reno responded better compared to TCP Reno with

the interpretation of Partial acks as indications of packet loss and does not remove it

out from the Fast Recovery phase. Because the timeout timer is renewed when acks

are received, New Reno is able to maintain high throughput (Chohan, 2006).

• TCP Vegas: TCP Vegas uses packet delay as an indication of congestion. During

the situation when a duplicate ack is received the timestamp for the ack is

compared to a timeout value. If the timestamp is greater than the timeout value then

Vegas will retransmit rather than waiting for three duplicate acks(Chohan,2006).

• UDP: User Datagram Protocol is part of the Internet Protocol suite, using which,

programs running on different computers on a network can send short messages

known as Datagrams to one another. UDP can be used in networks where TCP is

traditionally used.

• Bandwidth: In computer networks, bandwidth is often used as a synonym for data

transfer rate - the amount of data that can be carried from one point to another in a

given time period (usually a second).

• Simulation: is the discipline of designing a model of an actual or theoretical

physical system, executing the model on a digital computer, and analyzing the

execution output.

• NS-2: is a discrete event simulator targeted at networking research. Ns provides

substantial support for simulation of TCP, routing, and multicast protocols over

wired and wireless (local and satellite) networks.

14
Chapter 1: Introduction

1.9 Organization of the Thesis

Chapter two gives an overview of transmission control protocol and user datagram

protocol, network simulation-2 components, and some related work. Chapter three

describes a methodology that used to setup a test-bed environment and implements the

experiments. Chapter four present the finding and analysis of the experiments results that

done. Chapter five gives a conclusion and suggested for future works.

15
Chapter 2: Literature Review

 CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

 A common form of bandwidth allocation is to allow weighted fair sharing of

bandwidth among different applications. For instance, a user may decide to set aside one

fourth of the available bandwidth for a peer-to-peer sharing application, another fourth of

the bandwidth for an ftp download, and to allocate the remaining bandwidth for web

browsing. However, there are cases in which an application requires a minimum

guaranteed bandwidth allocation regardless of current link capacity. Multimedia

streaming applications are a prime example of such applications, since they generally

require constant play out at a particular rate, and are sensitive to fluctuations in the

received rate. Many online games also have strict minimal bandwidth requirements for

adequate usability. These applications can suffer from severe performance degradations if

they fail to receive a minimum desired bit-rate. Hence it may be desirable to specify a

minimum bit-rate for these applications regardless of the total link capacity, and to

perform weighted sharing of any remaining bandwidth (Zakhor, 2003).

Pervasive computing or ubiquitous computing is a new concept in computer

science. Several attempts have been made to define what pervasive computing is. A

rough definition of pervasive computing could computers be everywhere at anytime. The

term Desegregated Computing can be used as well to denote devices with small

processors embedded and interconnected, such as monitors, projectors, printers, input

devices, PDAs, and phones. Currently, resources such as mail boxes, printers, and disk

16
Chapter 2: Literature Review

space are readily available at any network. Devices such as PDAs and cell phones are

capable of accessing them. The growth in the popularity of this kind of portable devices

has increased the need to develop technology for connecting to these resources. Further

study in this area will lead us eventually to the definition of pervasive computing stated

above computers everywhere at any time (Barbeau, 2000).

2.2 Interaction between TCP and UDP flows in Wireless

A link in a wireless network is an abstract notion defined by the connectivity

between two nodes. Data sent by a node might be overheard by many other nodes or even

be perceived as only interference. The presence of a link in a wireless network might be

intermittent (e.g., due to mobility), links have varying quality (and hence bandwidth) and

unlike wired networks, where congestion is in general caused by overfull queues, there

may also be contention for the spatial reuse of the ether, causing congestion in the

network. The TCP feedback loop is responsible for adapting the sender data rate in

response to, e.g., congestion. However, this end-to-end congestion control mechanism

has reduced efficiency in wireless networks because transmission is inherently broadcast.

Furthermore, there are different ranges for uncast radio transmission, broadcast radio

transmission and interference. Even if the offered data rate is adapted to the bottleneck in

a network path, transmissions might still contend and interfere with other. TCP has been

designed to be fair between competing flows, i.e., TCP backs off in a way that an

equilibrium is reached where all competing flows get an equal chunk of the available

bandwidth at a bottleneck. CBR UDP flows are not rate adaptable and lacks congestion

control. However, moderate rate flows, e.g., MP3 or voice streams could be considered

17
Chapter 2: Literature Review

marginal because they use relatively little bandwidth. In the presence of UDP flows, TCP

should probe the data path by increasing its congestion window until loss occurs. In that

case it should back off and not use more bandwidth than what is left after the UDP flow.

The work in this paper examines the efficiency of the TCP rate adaptation in the presence

of UDP flows (Rohner, et al, 1998).

2.3 Multi-hop UDP with TCP flow

In this scenario we increase the complexity by adding an extra node 3, which is

mobile and sends a TCP flow to node 0. Node 3 starts at the far left position in Figure

2.1, outside the transmission range of node 1. Ten seconds into the scenario, node 3 starts

moving toward node 0 and then when reaching that position (at time 38) it ends its

movement.

Figure 2.1: The TCP vs UDP scenario

The purpose of this scenario is to see how TCP adapts its send rate (if at all) when

moving to the position close to node 0, where it is potentially more affected by channel

contention from both node 1 and node 2. We also want to see how the UDP flow from

node 2 to node 0 is affected by the increased contention. Over five test runs, the average

UOP delivery ratio was 97.4 %, a slight decrease from the previous scenario. The average

18
Chapter 2: Literature Review

TCP throughput was 1.34 Mbit/s. At first this number seemed unexpectedly low.

However, considering the overhead of TCP, feedback loop (packets in both directions

and extra header size) and the contention with the UOP flow from both links (between

nodes 2 and 1 and 1 and 0, respectively), the number 1.34 Mbit/s might not seem so

unreasonable. Understanding the exact reasons for this particular throughput requires

further investigation.

Figure 2.2 Example of UDP inter packet deliverytime in the static multi-hop scenario.

 (Xu and Saadawi, 2001)

As we shown in Figure 2.2 we see the UDP inter packet delivery time on the link

between node 2 and 1 and 1 and 0 respectively, along with the TCP time sequence graph

for the TCP flow between node 3 and 0, for one of the experiments. Although variations

are apparent throughout all experiments, Figure 2.2 is representative for a typical test run.

19
Chapter 2: Literature Review

It can be seen that most of the packet loss on the UDP flow again occurs on the link

between node 1 and 0. After node 3 has moved and is in direct contact with node 1, the

jitter between node 2 and 1 is also more apparent, indicating that the 3. TCP flow is

interfering with the UDP flow at that link. An interesting observation can also be made at

time 50, where there is an increase in the TCP throughput. This increase comes at a cost,

inducing a higher amount of jitter at the link between node 2 and1. This behavior is

persistent in most of the experiments. It is not clear why TCP increases its throughput in

this situation. One possible explanation could be the capture effect(Xu and Saadawi,

2001)

2.4 TCP Vegas vs. TCP Reno

According to (Jeonghoon et al, 2004) they analyzed the performance of TCP

Vegas in comparison with TCP Reno. They reached to the TCP Vegas does lead to a fair

allocation of bandwidth and explained some of its other characteristics, also

demonstrated through both analysis and simulations that TCP Vegas does not suffer from

the delay bias as TCP Reno does. TCP Vegas achieves better performance than TCP

Reno since its bandwidth estimation does not rely on packet losses in order to estimate

the available bandwidth in the network. However, when competing with other TCP Reno

connections, TCP Vegas gets penalized due to the aggressive nature of TCP Reno and

TCP Vegas does lead to a fair allocation of bandwidth and explained some of its other

characteristics. They demonstrated through both analysis and simulations that TCP Vegas

does not suffer from the delay bias as TCP Reno does. TCP Vegas achieves better

performance than TCP Reno since its bandwidth estimation does not rely on packet

20
Chapter 2: Literature Review

losses in order to estimate the available bandwidth in the network. However, when

competing with other TCP Reno connections, TCP Vegas gets penalized due to the

aggressive nature of TCP Reno (Jeonghoon M. et al, 2004).

2.5 TCP Startup Performance in Large Bandwidth

Next generation networks with large bandwidth and long delay pose a major

challenge to TCP performance, especially during the startup period. In this paper we

evaluate the performance of TCP Reno/Newreno, Vegas and Hoe's modification in large

bandwidth delay networks. We propose a modified Slow-start mechanism, called

Adaptive Start (Astart), to improve the startup performance in such networks. When a

connection initially begins or re-starts after a coarse timeout, Astart adaptively and

repeatedly resets the Slow-start Threshold (ssthresh) based on an eligible sending rate

estimation mechanism proposed in TCP Westwood. By adapting to network conditions

during the startup phase, a sender is able to grow the congestion window (cwnd) fast

without incurring risk of buffer overflow and multiple losses. Simulation experiments

show that Astart can significantly improve the link utilization under various bandwidth,

buffer size and round-trip propagation times. The method avoids both under-utilization

due to premature Slow start termination, as well as multiple losses due to initially setting

ssthresh too high, or increasing cwnd too fast. Experiments also show that Astart

achieves good fairness and friendliness toward TCP NewReno. Lab measurements using

a FreeBSD Astart implementation are also reported in this paper, providing further

evidence of the gains achievable via Astart.

21
Chapter 2: Literature Review

According to (Singh, Guha & Francis, 2005) it is well-known that TCP Reno

represents a performance bottleneck as the delay-bandwidth product increases. On high-

bandwidth-delay links, the additive increase policy of one packet every RTT necessitates

thousands of RTTs to reach full link utilization.

2.6 A Comparative Analysis of TCP Tahoe, Reno, New-Reno, and Vegas

2.6.1 TCP Tahoe

Tahoe refers to the TCP congestion control algorithm which was suggested by Van

Jacobson in his paper (Floyd & Henderson, 1999). TCP is based on a principle of

'conservation of packets', i.e. if the connection is running at the available bandwidth

capacity then a packet is not injected into the network unless a packet is taken out as well.

TCP implements this principle by using the acknowledgements to clock outgoing packets

because an acknowledgement means that a packet was taken off the wire by the receiver.

It also maintains a congestion window CWO to reflect the network capacity (Floyd &

Henderson, 1999). However there are certain issues, which need to be resolved to ensure

this equilibrium.

 1. Determination of the available bandwidth.

 2. Ensuring that equilibrium is maintained.

 3. How to react to congestion.

2.6.2 New-Reno

New RENO is a slight modification over TCP-RENO. It is able to detect multiple

packet losses and thus is much more efficient that RENO in the event of multiple packet

22
Chapter 2: Literature Review

losses.

Like Reno, New-Reno also enters into fast-retransmit when it receives multiple duplicate

packets, however it differs from RENO in that it doesn't exit fast-recovery until all the

data which was out standing at the time it entered fast recovery is acknowledged. Thus it

overcomes the problem faced by Reno of reducing the CWD multiples times. The fast

transmit phase is the same as in Reno. The difference in the fast recovery phase which

allows for multiple re-transmissions in new-Reno. Whenever new-Reno enters fast

recovery it notes the maximums segment which is outstanding. The fast-recovery phase

proceeds as in Reno, however when a fresh ACK is received then there are two cases:

1.If it ACK' s all the segments which were outstanding when we enter fast

recovery then it exits fast recovery and sets CWD to ssthresh and continues

congestion avoidance like Tahoe.

2. If the ACK is a partial ACK then it deduces that the next segment in line was lost

and it re-transmits that segment and sets the number of duplicate ACKS received to

zero. It exits Fast recovery when all the data in the window is acknowledged.

2.6.3 Vegas

Vegas is a TCP implementation which is a modification of Reno. It builds on the

fact that proactive measures to encounter congestion are much more efficient than

reactive ones. It tried to get around the problem of coarse grain timeouts by suggesting an

algorithm which checks for timeouts at a very efficient schedule. Also it overcomes the

problem of requiring enough duplicate acknowledgements to detect a packet loss, and it

also suggest a modified slow start algorithm which prevent it from congesting the

23
Chapter 2: Literature Review

network. It does not depend solely on packet loss as a sign of congestion. It detects

congestion before the packet losses occur. However it still retains the other mechanism of

Reno and Tahoe, and a packet loss can still be detected by the coarse grain timeout of the

other mechanisms fail.

2.6.4 TCP RENO

This Reno retains the basic principle of Tahoe, such as slow starts and the coarse grain

re-transmit timer. However it adds some intelligence over it so that lost packets are

detected earlier and the pipeline is not emptied every time a packet is lost. Reno requires

that we receive immediate acknowledgement whenever a segment is received. The logic

behind this is that whenever we receive a duplicate acknowledgment, then his duplicate

acknowledgment could have been received if the next segment in sequence expected, has

been delayed in the network and the segments reached there out of order or else that the

packet is lost. If we receive a number of duplicate acknowledgements then that means

that sufficient time has passed and even if the segment had taken a longer path, it should

have gotten to the receiver by now. There is a very high probability that it was lost. So

Reno suggest an algorithm called 'Fast Re-transmition. Whenever we receive 3 duplicate

ACK's we take it as a sign that the segment was lost, so we re-transmit the segment

without waiting for timeout. Thus we manage to re-transmit the segment with the pipe

almost full. Another modification that RENO makes is in that after a packet loss, it does

not reduce the congestion window to I. Since this empties the pipe. It enters into a

algorithm which we call' Fast-Re- Transmit'. The basic algorithm is presented as under:

1. Each time we receive 3 duplicate ACK's we take that to mean that the segment

was lost and we re-transmit the segment immediately and enter 'Fast Recovery'

24
Chapter 2: Literature Review

2. Set SSthresh to half the current window size and also set CWO to the

same value.

3. For each duplicate ACK receive increase CWO by one. If the increase CWO

is greater than the amount of data in the pipe then transmit a new segment else

wait.

If there are 'w' segments in the window and one is lost, then we will receive (w-I)

duplicate ACK's. Since CWO is reduced to W/2, therefore half a window of data is

acknowledged before we can send a new segment. Once we retransmit a segment, we

would have to wait for at least one RTT before we would receive a fresh

acknowledgement. Whenever we receive a fresh ACK we reduce the CWND to SSthresh.

If we had previously received (w-I) duplicate ACK's then at this point we should have

exactly w/2 segments in the pipe which is equal to what we set the CWND to be at the

end of fast recovery. Thus we don't empty the pipe, we just reduce the flow. We continue

with congestion avoidance phase of Tahoe after that.

2.7 TCP Tahoe /Reno

The two most common TCP distributions, TCP Tahoe and TCP Reno, have mechanisms

to compensate for the efficiency drop due to the congestion related packet loss. These

mechanisms are proven to be successful in the wired networks. In fact, both varieties of

TCP are designed with only wired networks in mind. The importance of this assumption

is that the only major type of packet loss the wired networks experience is caused by

network congestion (Todorovic, 2005).

25
Chapter 2: Literature Review

2.8 TCP vs. UDP Performance Evaluation for CBR Traffic on Wireless Multihop

Networks

We present a comprehensive set of measurements of a 2.4 GHz DSSS (Direct-

Sequence Spread Spectrum) wireless LAN and analyze its behavior. We examine issues

such as host and interface heterogeneity, bidirectional (TCP) traffic and error modeling

that have not been previously analyzed. We uncover multiple problems with TCP and

UDP performance in this system. We investigate the causes of these problems (radio

hardware, device drivers, network protocols) and discuss the effectiveness of proposed

improvements (Xylomenos and Polyzos, 1999)

The transport layer behavior regarding TCP and UDP protocols was evaluated. Several

simulation scenarios in ns2, over different network topologies and data flow patterns

were carried out. QoS characteristics are evaluated for low and heavy traffic in order to

characterize throughput, delay and power consumption behavior of the above protocols

Simulation results show that TCP suffers on multihop wireless routes, managing to

deliver minimum amount of packets on destination. Therefore, fewer data packets can be

sent over the multi hop wireless routes compared to UDP protocol. Furthermore, delay is

short, because the transmit window of TCP was minimal. On the other hand, UDP

achieved better results in throughput, although its mean delay was higher compared to

TCP. The reason UDP is faster than TCP is because there is no form of flow control or

error correction which also explains the fact that delay over UDP is higher compared to

TCP. Finally, as power is concerned, TCP is a more power consuming protocol than

UDP, due to the complexity of TCP's structure, i.e. (acknowledgment packets must be

send)as well as packet retransmissions are forced (S. Giannoulis, et al,).

26
Chapter 2: Literature Review

According to (Rohner, et al 1998) through a set of simple experiments in a real world

setting the effect of constant bit rate (CBR) UDP traffic on adaptive TCP and vice versa,

is investigated.

2.9 Behavior of TCP in variable-bandwidth environments

Available bandwidth is the most useful measurement to network adaptive

applications and transports. Unfortunately, it is also very difficult to measure in a

network that cannot be well approximated by a weighted fair queuing model, such as the

Internet (Kazantzidis, 2001).

(Lee ,et al, 2001) they found the following results First, increasing the bandwidth-

delay product leads to performance degradation regardless of TCP versions and the

bottleneck buffer size. Second, NewReno outperforms Reno and SACK when no packet

losses occur during the slow-start phase. Finally, increasing the bottleneck buffer size can

lead to improve the link utilization, especially as the bandwidth-delay product gets larger.

According to (Fang, et al, 2005) they define the available bandwidth over one link

as the link bandwidth minus the unutilized bandwidth. The estimation scheme is passive

measurement, not using any probing messages that may interfere with the networks. The

method need not wait too long for data convergence.

Most of the studies on TCP have assumed than the bottleneck bandwidth remains

constant over time. In wired networks, the available bandwidth for best-effort trace is

usually constant but major changes are foreseen as many telco operators and Internet

providers (ISP) are beginning to deploy Quality of Service (QoS) features with

27
Chapter 2: Literature Review

reservation like or priority-like mechanisms in their networks. These new technologies,

along with the strong desire to provide bandwidth-on-demand features, may turn wired

networks into highly variable-bandwidth environments (VBE) for the best-effort traffic,

In this paper we present a preliminary study of TCP in VBE and show simulation results

to better understand the behavior and the performances of TCP in such environments.

Both sine-based and step-based bandwidth variations models are used. Both the study

and the simulation results show that YBE are challenging networking environments for

TCP where packet losses are very frequently encountered. In this case it is tempting to let

the TCP congestion control performs the regulation of bandwidth which would limit the

growth of cwnd, but there is at the same time the need to grab very quickly the bandwidth

when it increases. There are new propositions that increases the TCP increase slope in

congestion avoidance phase (Jin, Wei & Low, 2004) for very high bandwidth delay

product networks, but then a bandwidth drop is very costly and some preliminary

simulations of such approaches suggest that the inefficiency problem is still not

completely solved. Regarding the buffer size, the results suggest that the larger the buffer,

the lower the inefficiency. However, as we did not look at the end-to-end performance

issues such as the transmission completion time, it is still early to say that large buffers

are better because large buffers also means more timeouts. We are currently performing

more simulations to investigate this issue and also fairness issues.

2.10 Reno TCP

According to (Eddy, 2004) Reno TCP's features include slow-start, congestion

avoidance, and fast retransmit which were carried over from the previous Net/1 Tahoe

release, and additionally the fast recovery algorithm. These features are all congestion

28
Chapter 2: Literature Review

control related. Originally TCP used the window advertised by the receiver as the

amount of data it would send unacknowledged. This was problematic in that the receiver

advertises how much buffer space it has made available in memory. Since bytes of end-

host memory might be plentiful while router memory may not be, the advertised window

can be greater than the buffering capacity of the network.

UDP is able to send almost all the required number of messages within due time

whereas throughput for SCTP varies greatly, being on the lower side with lesser buffer

sizes and increases with increasing buffer sizes.

Again it is visible the UDP performs better and the reason in quiet obvious for

this that UOP has no transport overheads, no flow control, no congestion control, no

slow starts. It works in a flat out manner, keeping the thing very simple and straight

forward, although not friendly with internet traffic of today with TCP's share of more

than 80% (Gill, 2008).

The performance of UOP applications over wireless links has not been

extensively studied in the past, mainly due to their diversity. UDP applications were also

perceived as LAN oriented, a situation challenged by UDP-based multimedia streaming

on the Internet. Considerable work has been devoted to TCP however. Most TCP

enhancement schemes try to avoid triggering congestion recovery due to wireless errors.

General purpose TCP enhancements such as Selective Acknowledgments improve TCP

performance by reducing the number of redundant TCP retransmissions, without

reducing their delay though (Polyzos, 2003).

29
Chapter3: Research Methodology

CHAPTER THREE

RESEARCH METHODOLOGY

3.1 Introduction

This chapter discusses the methodology that has been used in this project to

achieve the project objectives. It is more than just a collection of methods to handle the

research; it is a semantic way proposed by the researcher to solve the research problems.

The researcher depend on a simulation model that used by (Yaacob, 2003) to proposed a

simulation test-bed environment (Figure 3.1) which contains six phases. It is involves the

testing of specific values of the decision or uncontrollable variables in the model and

observing the impact on the output values. It also involves setting up a model of a real

system and conducting repetitive experiments on it.

Figure 3.1: Simulation Test-Bed Model (Yaacob, 2003)

Problem definition

Design the simulation model

Configuration the simulation model

Design the experiments

Configuration the experiments

Analysis & evaluate the result

30
Chapter3: Research Methodology

3.2 Description of experiments

The main goal of this project is investigate the effects of TCP and UDP

Performance in term of bandwidth usage. So far, the traditional methods for examining

the performance of TCP and UDP have been measurement, implementation and

simulation. However, measurement and experimentation (Floyd and Henderson, 1999)

have limitations in that they can only be used to explore the existing Internet. Even.

According to (Bajaj,et al, 1999) Simulation is a vital tool to quickly and

inexpensively explore the behavior of new protocols across the range of topologies, and

interactions that might occur in the Internet.

Furthermore, simulation (Floyd and Henderson, 1999) plays vital role in attempting to

characterize both the behavior of the current Internet and the possible effects of proposed

changes to its operation, and also in helping researchers to develop intuition. In

particular, the complexities of the Internet topologies and traffic and the central role of

adaptive congestion control make simulation the most promising tool for addressing

many of the questions about Internet traffic dynamics (Floyd and Henderson, 1999). Not

to forget that many successful TCP and UDP performance evaluations have been

conducted via simulation (Fall & Floyd, 1996). The following is a list of the advantages

of using a simulator to evaluate TCP’s performance:

• Simulators are not equipment intensive, as only a single basic workstation is

 needed to run the simulations and analyze the data.

• Simulators allow a researcher to easily examine a wide range of scenarios in a

 relatively short amount of time.

• Simulation also provides a means of testing TCP performance across “rare”

31
Chapter3: Research Methodology

 networks that a researcher does not have good access to use.

• Complex topologies can be easily created via simulation, whereas such

 topologies would not be easy to replicate in a test bed environment.

• Simulators give the researcher access to data about all the traffic transmitted

 in the simulation.

Therefore, the performance investigation of TCP and UDP in this project involves using

simulation Scenarios.

3.3 Simulation steps

3.3.1 Problem Definition

Problem definition is an important phase in every study. In this study, the

researcher tried to study and collect the necessary information that related to the

performance of TCP and UDP in term of bandwidth usage when their applications share

the same link. This phase represent the backbone for this study. Information have been

gathered and collected from books, journals, proceedings, white papers, reports.

This phase aim to specify the research problem(s), scope, domain, and the

limitation after reviewing the collected information and the previous work done by other

researchers to start from where they stopped.

32
Chapter3: Research Methodology

3.3.2 Design the Simulation Model

To test the performance effect, of the TCP and UDP in term of bandwidth usage,

create the simulation will be needed to run through network simulation. In order to create

the topology and run the protocols, we use Network Simulator 2 (NS2) to create and run

the coding. NS2 only work in UBUNTU, in our simulation model we will create (8)

nodes and send two applications (FTP and CBR) to represent our protocols TCP and

UDP. (refer to Figure 3.2)

 TCP agent TCP sink

 Share link

 UDP agent

 UDP sink

 Figure 3.2: Simulation Model

3.3.3 Configuration the Simulation Model

After the simulation model has been designed, the configuration starting, to use NS2

for performance evaluation of TCP and UDP we will create (8) nodes and send two

applications (FTP and CBR) to represent our protocols (TCP and UDP), for each

application we will create agent and sink (e.g. source and destination for each protocol).

3

1

4

2

5 6

8

7

33
Chapter3: Research Methodology

3.3.4 Design the Experiments

 To run the codes, we use command which use a few code in running the coding.

Then we will get a topology, which is the flow of the packet within the source and

destination, base on the coding. A graph also appears after the command.

3.3.5 Conduct the Experiments

This phase of the methodology applying the experiments designed in the previous

phase. By depending on our codes, for each experiment need to change the type of TCP

(Tahoe, Reno, Newreno and Vegas) and the rate of UDP. Also for each scenario we will

get the graph that will use in performance evaluation of UDP and TCP in term of

bandwidth usage.

3.3.6 Analysis & Evaluation the Results

The amount of bandwidth usage by TCP and UDP will be used as an indicator of

performance of TCP and UDP, this amount we will find it from the graph that will

appear after each code running (with each scenario). Beside the graph we will get the

trace file for each scenario also which contain the data of bandwidth usage.

34
Chapter4: Simulation Results

CHAPTER 4

SIMULATION RESULTS

4.1 TCP Tahoe Simulation results:

We have been run two scenarios with TCP Tahoe once with 200Kb rate of UDP and
other with 4Mb rate of UDP.

4.1.1 TCP Tahoe with 200Kb rate of CBR

Figure 4.1: The bandwidth usage of TCP Tahoe with 200Kb of UDP

As shown in figure 4.1 TCP Tahoe is consumed bandwidth more than UDP because the

CBR is small (200Kb) and the maximum value of usage bandwidth was (2.6*10^6).

35
Chapter4: Simulation Results

4.1.2 TCP Tahoe with 4Mb rate of CBR

Figure 4.2: The bandwidth usage of TCP Tahoe with 4Mb of UDP

As we shown in figure 4.2 the bandwidth usage by TCP Tahoe is less than bandwidth

usage by UDP when the CBR is big (4Mb), and we note the UDP is started with big

value of bandwidth usage (2.5*10^6) while the TCP is started with zero value.

4.2 TCP Reno Simulation results:

We have been run two scenarios also with TCP Reno once with 200 Kb rates of UDP and

other with 4Mb rate of UDP.

36
Chapter4: Simulation Results

4.2.1 TCP Reno with 200Kb rate of CBR

Figure 4.3: The bandwidth usage of TCP Reno with 200Kb of UDP

As shown in figure 4.3 TCP Reno is consumed bandwidth more than UDP because the

CBR is small (200Kb) and the maximum value of usage bandwidth was (2.6*10^6).

4.2.2 TCP Reno with 4Mb rate of CBR

 Figure 4.4: The bandwidth usage of TCP Reno with 4Mb of UDP

37
Chapter4: Simulation Results

As we shown in figure 4.4 the bandwidth usage by TCP Reno is less than bandwidth

usage by UDP when the CBR is big (4Mb), and we note the UDP is started with big

value of bandwidth usage (2.5*10^6) while the TCP is started with zero value.

4.3 TCP Newreno Simulation results:

We have been run two scenarios also with TCP Newreno once with 200Kb rate of UDP

and other with 4Mb rate of UDP.

4.3.1 TCP Newreno with 200Kb rate of CBR

Figure 4.5: The bandwidth usage of TCP Newreno with 200Kb of UDP

As shown in figure 4.5 TCP Newreno is consumed bandwidth more than UDP because

the CBR is small (200Kb) and the maximum value of usage bandwidth was (2.6*10^6).

38
Chapter4: Simulation Results

. And the bandwidth usage by UDP still small compared with bandwidth usage by TCP

Tahoe, Reno and Newreno.

4.3.2 TCP Newreno with 4Mb rate of CBR

Figure 4.6: The bandwidth usage of TCP Newreno with 4Mb of UDP

As we shown in figure 4.6 the bandwidth usage by TCP Newreno is less than bandwidth

usage by UDP when the CBR is big (4Mb), and we note the UDP is started with big

value of bandwidth usage (2.5*10^6) while the TCP is started with zero value. Also we

note the maximum value of bandwidth usage by TCP Newreno is more than maximum

value in first and second scenario.

4.4 TCP Vegas Simulation results:

We have been run two scenario also with TCP Reno once with 200Kb rate of UDP and

other with 4Mb rate of UDP.

39
Chapter4: Simulation Results

4.4.1 TCP Vegas with 200Kb rate of CBR

 Figure 4.7: The bandwidth usage of TCP Vegas with 200Kb of UDP

As shown in figure 4.7 TCP Newreno is consumed bandwidth more than UDP because

the CBR is small (200Kb) and the maximum value of usage bandwidth was (2.6*10^6).

And the bandwidth usage by UDP still small compared with bandwidth usage by TCP

Tahoe, Reno, Newreno and Vegas.

4.4.2 TCP Vegas with 4Mb rate of CBR

Figure 4.8: The bandwidth usage of TCP Vegas with 4Mb of UDP

40
Chapter4: Simulation Results

As we shown in figure 4.8 the bandwidth usage by 4Mb rate of UDP is more than

bandwidth usage by TCP Vegas, but in this scenario the maximum value of bandwidth

usage by TCP Vegas which is (4.2*10^6) is less among previous scenarios.

41
Chapter5: Discussion And Conclusion

CHAPTER 5

DISCUSSION AND CONCLUSION

5.1 Introduction

This chapter provides an overall review of the results, discussions, implications,

and limitations. It will begin with a analyzing and discussion on the research findings,

followed by a discussion on the implications of the study. Finally, The study limitations

based on the subject of this study.

5.2 Discussions of the finding

The purpose of this research was to investigate the performance of TCP and UDP

in term of bandwidth usage. In addition, the study also aimed to help researchers who are

interested in improving TCP or UDP performance by giving them an accurate insight

about TCP and UDP performance in term of bandwidth usage.

The research focused on study TCP and UDP performance in terms of bandwidth

usage, using simulation tool NS2. Also two types of traffic (FTP and CBR) were used

during the simulation course, and two scenarios were run for each CBR rate (200Kb and

4Mb) on the same network topology, and for each one to this scenarios we used one of

the four TCP’s types (Tahoe, Reno, Newreno, and Vegas) which we used in our

experiments.

42
Chapter5: Discussion And Conclusion

Based on our project, we can say that the average bandwidth available to different

versions of TCP are not the same. But for this network, we prefer to adopt TCP Vegas

because the average bandwidth is higher than other TCP versions.

Regarding the bandwidth share of TCP and UDP, we agree that UDP traffic is

suppressing the bandwidth share of TCP traffic. To prevent that, the UDP rate should be

decrease if the UDP rate is higher than TCP rate. We can see the differences between

200KB rate of UDP with 4 MB rate of UDP in the graph above.

Based on the graph, there is no difference between all versions of TCP except for

TCP Vegas which the average bandwidth of the TCP Vegas is the highest among all the

TCP versions.

From our observation, we know that TCP protocol will establish the connection

and has acknowledgement to guarantee that the packet send can arrive in orders, and

there is no duplicates between the packets. Furthermore, UDP flows do not have any

congestion avoidance mechanisms; they do not slow down when their packets are

dropped at the routers. In the current internet, as TCP implements congestion avoidance

algorithm, it is at a disadvantage (Sudha, et al, 2008). Unlike TCP, UDP protocol does

not provide flow and congestion control, its only offer best effort policy. For the speed,

TCP can tolerate some packet loss but require a minimum send rate. On the other hand,

UDP can send data faster than TCP because there is no connection establishment, no

connection state and unregulated send rate. Based on the reasons, UDP is suitable for

real-time application such as video conferencing. The real-time application can tolerate

43
Chapter5: Discussion And Conclusion

with data loss but at the same time it needs the data to be sent as fast as possible. In this

case, UDP fulfill the application’s requirement.

5.3 Implications of the study

This study has attempted to contribute to the body of work on simulation,

modeling, analyzing and improving TCP and UDP protocol.

This research also help anybody wants to model a student’s lab or internet café

that will be when our study helps the manager to estimate the bandwidth he need to build

success project, because the user satisfaction is important in term of economic.

This study contributes in the development of a network topology. This network

topology may form a useful simulation topology for utilizing by other researchers in

order to assess, study, and test the TCP and UDP performance.

This research also provides guide to TCP and UDP researchers whom thinking

about improving TCP or UDP performance. Since, the findings reveal that TCP behaves

better than UDP when CBR rate was big in the same link, and this issue needs to enhance

UDP performance with big rate in term of bandwidth usage.

5.5 Conclusion

 Accurate network bandwidth effect is important to a variety of network

applications. In spite of the recent sudden increase in accessibility of broadband Internet

access, the best part of home users have fairly small-bandwidth links in comparison with

the sites hosting beloved content. It is quite common for users to run multiple

44
Chapter5: Discussion And Conclusion

networking applications on a single connection, and the growing popularity of recent

peer-to-peer file-sharing services. Consequently there are many circumstances in which

the last hop link becomes a bottleneck resulting in congestion among a user’s

applications.

 Based on our project, we can conclude that different type of TCP can give

different result on those simulations. In this case, TCP Vegas seems to be the best

compared to other types of TCP. Besides, packets transfer also influenced by the rate of

the bandwidth.

 We also notice that the rate of UDP has the possibility to affect TCP send rates,

depends on the UDP’s rate. More higher the UDP’s rate, more suppressed the TCP traffic

will be at the shared bandwidth.

45
References

REFERENCES

A study of the behavior of TCP in variable-bandwidth environments. from

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.8428 2/8

A Comparative Analysis of TCP Tahoe, Reno, New-Reno, SACK and Vegas. (1998).

from

http://inst.eecs.berkeley.edu/~ee122/fa05/projects/Project2/SACKRENEVEGAS.

pdf

A.K.Aggarwal, A. (2003). ACC – ABCD Compliant NS-2.

Allman, M., and Falk, A. (1999). On the Effective Evaluation of TCP. ACM Computer

Communication Review.

Allman, M., Paxson, V., and Stevens, W. (1999). TCP Congestion Control. RFC

2581, IETF

Bajaj, s., Breslau, L., Estrin, D., Fall, K., Floyd, S., Haldar, P., et al. (1999). Improving

Simulation for Network Research. IEEE.

Barbeau, J. G. M. (2000). "Comparison of Bandwidth Usage: Service Location Protocol

and Jini."

Chohan, N. (2006). An Analysis of TCP through Simulation.

Eddy, W. M. (2004). Improving Transmission Control Protocol Performance With Path

Error Rate Information. College of Engineering and Technology of Ohio

46
References

University.

Fall, K.andFloyd,S.1996. Simulation-based Comparison of Taho, Reno and SSACK TCP.

Fang, Q., Jia, W., and Wu, J. (2005). Available Bandwidth Detection with Improved.

Transport Control Algorithm for Heterogeneous Networks. ACM, 656 - 659.

Floyd, S., and Fall, K. (1999). Promoting the use of end-to-end congestion control in the

Internet. IEEE/ACM Transactions on Networking, 7(4).

Floyd, S., and Fall, K.2001. Why we don't know how to simulate the Internet.

Floyd, S., and Fall, K.1997. Difficulties in Simulating the Internet.

Forouzan, B. (2000). TCP/IP Protocol Suite. Boston: MCGrawHill.

Giannoulis, S., Antonopoulos, C., Topalis, E., Athanasopoulos, A., Prayati, A., and

Koubias, S. TCP vs. UDP Performance Evaluation for CBR Traffic On Wireless

Multihop Networks. from

http://www.wcl.ee.upatras.gr/csndsp/CD/contents/Sessions/Presentations/A7%20-

%20Wireless%20LAN/A7.4.pdf

Gill, M. and. Zafar. M. S. (2008). Evaluation of UDP and SCTP for SIP-T and TCP, UDP

and SCTP with constant traffic.

Govea, J., and Barbeau, M. (2000). Comparison of Bandwidth Usage: Service Location

Protocol and Jini. from

www.scs.carleton.ca/~barbeau/Publications/2000/TR_00_06.pdf

Hassan, M., and Jain, R. (2004). High Performance TCP/IP Networking Concepts,

47
References

Issues, and solutions. London: Prentice Hall.

Hossain, T. I. E. (2009). Introduction to Network Simulator NS2.

Huston, G., and Telstra. (2009). TCP Performance. The Internet Protocol Journal, 3(2).

Issariyakul, T., and Hossain, E. (2009). Introduction to Network Simulator NS2. New

York, USA: Springer Science+Business Media.

Jacobson, V. (1988). Congestion avoidance and control. Paper presented at the ACM

SIGCOMM Special Interest Group on Data Communications.

Jeonghoon Mo, R. J. L., Venkat Anantharam, and Jean Walrand. (2004). Analysis and

Comparison of TCP Reno and Vegas [Electronic Version].

Jin, C., X.Wei, D., and Low, S. H. (2004). FAST TCP: Motivation, Architecture,

Algorithms, Performance. IEEE Infocom

Kazantzidis, M. (2001). How to measure available bandwidth on the Internet. from

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.2565

Khorashadi, B., Chen, A., Ghosal, D., Chuah, C.-N., and Zhang, M. (2007). Impact of

Transmission Power on the Performance of UDP in Vehicular Ad Hoc Networks.

IEEE, 3698-3703.

Kurose, J., and Ross, K. (2005). Networking: A Top-Down Approach Featuring the

Internet (3 ed.). Boston: Addison-Wesley.

Lai, Y. and Yao, C. (2000). The Performance Comparison between TCP Reno and TCP

Vegas. IEEE, 61 – 66.

48
References

Lee, H., Lee, S.-h., and Choi, Y. (2001). The Influence of the Large Bandwidth-Delay

Product on TCP Reno, NewReno, and SACK. IEEE, 327-334.

Mattsson, N.-E. (2004). A DCCP module for NS-2. Lulea Tekniska University.

Mehra, P., and Zakhor, A. (2003). Receiver-Driven Bandwidth Sharing for TCP. IEEE,

7(4), 740- 752.

Mo, J., La, R. J., Anantharam, V., and Walrand, J. (1999). Analysis and Comparison of

TCP Reno and Vegas. IEEE, 3, 1556-1563

Peterson, L. L., and Davide, B. S. (2003). Network Simulation Experiments Manual. San

Francisco, USA: Morgan Kaufmann Publishers.

Polyzos, G. X. a. G. C. (2003). "Wireless link layer enhancements for TCP and UDP

applications."

Postel, J. (1981). Transmission Control Protocol. RFC 793.

Ren Wang, G. P., Kenshin Yamada, M.Y. Sanadidi, and Mario Gerla. (2004). TCP

Startup Performance in Large Bandwidth Delay Networks [Electronic Version].

Rohner, C., Nordstrmِ, E., Gunningberg, P., & Tschudinn, C. (1998). Interactions

between TCP, UDP and routing protocols in wireless multi-hop ad hoc

networks.ROSS, J. F. K. K. W. (2008). Computer network.

Ross, J. F. K. K. W. (2008). Computer network.

S.Floyd, and T.Henderson. (1999). The NewReno Modification to TCP’s Fast Recovery

Algorithm. RFC 2582.

49
References

S. Giannoulis, C. A., E. Topalis, A. Athanasopoulos, A. Prayati, S. Koubias.TCP vs.

UDP Performance Evaluation for CBR Traffic On Wireless Multihop Networks

[Electronic Version] from

http://www.google.com.my/search?hl=enandei=aGKoSvPFBIme6gPN3uWYBga

ndsa =1.

S.Sudha, Maddipati, S., and Ammasaigounden, N. (2008). A new adaptive marker for

bandwidth fairness between TCP and UDP traffic in DiffServ. IEEE, 1-5.

Singh, H., and Singh, S. (2002). Energy Consumption of TCP Reno, Newreno, and

SACK in Multi-Hop Wireless Networks. ACM, 206 - 216.

Singh, M., Guha, S., and Francis, P. (2005). Utilizing spare network bandwidth to

improve TCP performance. ACM.

Stevens, W. (1997). TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast

Recovery Algorithms. RFC 2001, IEEE.

Stevens ,W.(1994).TCP/IP illustrated.

Todorovic, M. (2005). Comparative Study Of The End-To-End Compliant Tcp Protocols

For Wireless Networks. Texas Tech University, USA.

Wang, R., Pau, G., Yamada, K., Sanadidi, M. Y., and Gerla, M. (2002). TCP Startup

Performance in Large Bandwidth Delay Networks. from www.ieee-

infocom.org/2004/Papers/16_5.PDF

Xu, S., and Saadawi, T. (2001). Does the ieee 802.11 mac protocol work well in multihop

wireless ad hoc networks? . IEEE Communications Magazine, 39(4).

50
References

Xylomenos, G., and Polyzos, G. C. (1999). TCP and UDP Performance over a Wireless

LAN. IEEE, 439–446.

Yaacob, N. A. (2003). Utilizing Snort in the analysis of intrusion Detection System.

University Utara Malaysia.

Zafar, M. S., and Gill, M. S. (2008). Evaluation of UDP and SCTP for SIP-T and TCP,

UDP and SCTP with constant traffic. Blekinge Institute of Technology.

Zakhor, P.M. (2003). Receiver-Driven Bandwidth Sharing for TCP [Electronic

 Version] from http://www.google.com.my/search?hl=enandq=Receiver-

Driven+Bandwidth+Sharing+for+TCP.6/8

52
Appendix

Appendix A Flow chart

Create a simulator object

Calculate the utilization

Call the record procedure:

Tell nodes when
simulations ends

Run the simulation

START

Define a finish procedure

Create duplex link
between nodes

Create the nodes

Create FTP traffic source

Create a TCP agent and

 TCP sink

Agent TCP

(Node 0)

Sink TCP

(Node 6)

Create a UDP agent and

UDP sink

Agent UDP

(Node 1)

Sink UDP

 (Node 7)

Create CBR traffic source

END

Get the Xgraph that
represent to bandwidth

usage

53
Appendix

Appendix B: NS2 SCOURCE CODE

1.TAHOE.
1.1 Script(200Kb rate of UDP)

#Create a simulator object

set ns [new Simulator]

$ns use-newtrace

#Define different colors for data flows (for NAM)

$ns color 1 Red

$ns color 2 Cyan

#Open the ns trace file

set nf [open out.nam w]

$ns namtrace-all $nf

set files(0) [open tcpTahoe.tr w]

set files(1) [open Udp.tr w]

set val(stop) 200 ;# time of simulation end

set val(nn) 8 ;# number of nodes

Define a 'finish' procedure

proc stop {} {

 global ns nf files

 $ns flush-trace

Close the NAM trace file

 close $nf

Close the output file

 close $files(0)

 close $files(1)

54
Appendix

#Execute xgraph tp display the result

exec xgraph tcpTahoe.tr Udp.tr -geometry 800*400 &

#Execute NAM on trace file

exec nam out.nam &

 exit 0

}

#Create 8 nodes

for {set i 0} {$i < $val(nn)} {incr i} {

 set n($i) [$ns node]

}

#Create a duplex link between the nodes

$ns duplex-link $n(0) $n(2) 5Mb 10ms DropTail

$ns duplex-link $n(2) $n(4) 10Mb 10ms DropTail

$ns duplex-link $n(4) $n(5) 5Mb 5ms DropTail

$ns duplex-link $n(5) $n(6) 5Mb 10ms DropTail

$ns duplex-link $n(1) $n(3) 10Mb 5ms DropTail

$ns duplex-link $n(3) $n(4) 10Mb 10ms DropTail

$ns duplex-link $n(5) $n(7) 5Mb 10ms DropTail

#Set node position in nam

$ns duplex-link-op $n(0) $n(2) orient right-down

$ns duplex-link-op $n(2) $n(4) orient right-down

$ns duplex-link-op $n(4) $n(5) orient right

$ns duplex-link-op $n(5) $n(6) orient right-up

$ns duplex-link-op $n(1) $n(3) orient rightp-u

$ns duplex-link-op $n(3) $n(4) orient right-up

$ns duplex-link-op $n(5) $n(7) orient right-down

#Create a TCP agent and attach it to node n0.The flow between n0 and n6

set src_tcp [new Agent/TCP]

55
Appendix

$ns attach-agent $n(0) $src_tcp

$src_tcp set class_ 1

$src_tcp set maxcwnd_ 64 ;# max congestion window size

#Create sink node and attach it to node 6 (n6)

set sink_tcp [new Agent/TCPSink/DelAck]

$ns attach-agent $n(6) $sink_tcp

$ns connect $src_tcp $sink_tcp

#Setup FTP over TCP connection

set ftp [new Application/FTP]

$ftp set packetSize_ 1024

$ftp attach-agent $src_tcp

#$ns at 0.5 "$tcp advanceby 1"

$ns at 0.0 "$ftp start"

Create UDP agent and attach it to node 1.UDP flow between n1 and n7

set src_udp [new Agent/UDP]

$ns attach-agent $n(1) $src_udp

$src_udp set class_ 2

#Create sink node abd attach to node 7 (n7)

set sink_udp [new Agent/LossMonitor]

$ns attach-agent $n(7) $sink_udp

$ns connect $src_udp $sink_udp

#Setup a CBR over UDP connection

set cbr [new Application/Traffic/CBR]

$cbr set packetSize_ 1024

$cbr set rate_ 0.2Mb

$cbr attach-agent $src_udp

$ns at 0.0 "$cbr start"

printing throughput of each client and channel utilization

56
Appendix

set last_udp 0.0

set last_tcp 0.0

proc plotFiles {} {

 global ns files last_udp last_tcp sink_udp sink_tcp val

 set time 0.1

 set now [$ns now]

 set total 0.0

 set cur_tcp [$sink_tcp set bytes_]

 set temp [expr cur_tcp-last_tcp]

 puts $files(0) "$now [expr $temp*8/$time]"

 set total [expr $total+$temp]

 set cur_udp [$sink_udp set bytes_]

 set temp [expr cur_udp-last_udp]

 puts $files(1) "$now [expr $temp*8/$time]"

 set total [expr $total+$temp]

 set last_udp $cur_udp

 set last_tcp $cur_tcp

 set nextTime [expr $now+$time]

 if { $nextTime <= $val(stop) } {

 $ns at $nextTime "plotFiles"

 }

}

$ns at 0.1 "plotFiles"

telling nodes when the simulation ends

for {set i 0} {$i < $val(nn)} {incr i} {

 $ns at $val(stop) "$n($i) reset";

}

$ns at $val(stop) "$ftp stop"

57
Appendix

$ns at $val(stop) "$cbr stop"

$ns at $val(stop) "stop"

$ns at 200.1 "puts \"end simulation\"; $ns halt"

$ns at 5.0 "stop"

#Run the simulation

$ns run

1.2 Script(4Mb rate of UDP)

 #Create a simulator object

 set ns [new Simulator]

 $ns use-newtrace

 #Define different colors for data flows (for NAM)

 $ns color 1 red

 $ns color 2 Cyan

 #Open the ns trace file

 set nf [open out.nam w]

 $ns namtrace-all $nf

 set files(0) [open tcpTahoe.tr w]

 set files(1) [open Udp.tr w]

 set val(stop) 200 ;# time of simulation end

 set val(nn) 8 ;# number of nodes

 # Define a 'finish' procedure

 proc stop {} {

 global ns nf files

 $ns flush-trace

58
Appendix

 # Close the NAM trace file

 close $nf

 # Close the output file

 close $files(0)

 close $files(1)

 #Execute xgraph tp display the result

 exec xgraph tcpTahoe.tr Udp.tr -geometry 800*400 &

 #Execute NAM on trace file

 exec nam out.nam &

 exit 0

 }

 #Create 8 nodes

 for {set i 0} {$i < $val(nn)} {incr i} {

 set n($i) [$ns node]

 }

 #Create a duplex link between the nodes

 $ns duplex-link $n(0) $n(2) 5Mb 10ms DropTail

 $ns duplex-link $n(2) $n(4) 10Mb 10ms DropTail

 $ns duplex-link $n(4) $n(5) 5Mb 5ms DropTail

 $ns duplex-link $n(5) $n(6) 5Mb 10ms DropTail

 $ns duplex-link $n(1) $n(3) 10Mb 5ms DropTail

 $ns duplex-link $n(3) $n(4) 10Mb 10ms DropTail

 $ns duplex-link $n(5) $n(7) 5Mb 10ms DropTail

 #Set node position in nam

 $ns duplex-link-op $n(0) $n(2) orient right-down

 $ns duplex-link-op $n(2) $n(4) orient right-down

59
Appendix

 $ns duplex-link-op $n(4) $n(5) orient right

 $ns duplex-link-op $n(5) $n(6) orient right-up

 $ns duplex-link-op $n(1) $n(3) orient rightp-u

 $ns duplex-link-op $n(3) $n(4) orient right-up

 $ns duplex-link-op $n(5) $n(7) orient right-down

 #Create a TCP agent and attach it to node n0.The flow between n0 and n6

 set src_tcp [new Agent/TCP/Tahoe]

 $ns attach-agent $n(0) $src_tcp

 $src_tcp set class_ 1

 $src_tcp set maxcwnd_ 64 ;# max congestion window size

 #Create sink node and attach it to node 6 (n6)

 set sink_tcp [new Agent/TCPSink/DelAck]

 $ns attach-agent $n(6) $sink_tcp

 $ns connect $src_tcp $sink_tcp

 #Setup FTP over TCP connection

 set ftp [new Application/FTP]

 $ftp set packetSize_ 1024

 $ftp attach-agent $src_tcp

 #$ns at 0.5 "$tcp advanceby 1"

 $ns at 0.0 "$ftp start"

 # Create UDP agent and attach it to node 1.UDP flow between n1 and n7

 set src_udp [new Agent/UDP]

 $ns attach-agent $n(1) $src_udp

 $src_udp set class_ 2

 #Create sink node abd attach to node 7 (n7)

 set sink_udp [new Agent/LossMonitor]

60
Appendix

 $ns attach-agent $n(7) $sink_udp

 $ns connect $src_udp $sink_udp

 #Setup a CBR over UDP connection

 set cbr [new Application/Traffic/CBR]

 $cbr set packetSize_ 1024

 $cbr set rate_ 4Mb

 $cbr attach-agent $src_udp

 $ns at 0.0 "$cbr start"

 # printing throughput of each client and channel utilization

 set last_udp 0.0

 set last_tcp 0.0

 proc plotFiles {} {

 global ns files last_udp last_tcp sink_udp sink_tcp val

 set time 0.1

 set now [$ns now]

 set total 0.0

 set cur_tcp [$sink_tcp set bytes_]

 set temp [expr cur_tcp-last_tcp]

 puts $files(0) "$now [expr $temp*8/$time]"

 set total [expr $total+$temp]

 set cur_udp [$sink_udp set bytes_]

 set temp [expr cur_udp-last_udp]

 puts $files(1) "$now [expr $temp*8/$time]"

 set total [expr $total+$temp]

 set last_udp $cur_udp

 set last_tcp $cur_tcp

61
Appendix

 set nextTime [expr $now+$time]

 if { $nextTime <= $val(stop) } {

 $ns at $nextTime "plotFiles"

 }

 }

 $ns at 0.1 "plotFiles"

 # telling nodes when the simulation ends

 for {set i 0} {$i < $val(nn)} {incr i} {

 $ns at $val(stop) "$n($i) reset";

 }

 $ns at $val(stop) "$ftp stop"

 $ns at $val(stop) "$cbr stop"

 $ns at $val(stop) "stop"

 $ns at 200.1 "puts \"end simulation\"; $ns halt"

 $ns at 5.0 "stop"

 #Run the simulation

 $ns run

2.RENO.
1.1 Script(200Kb rate of UDP)

#Create a simulator object

set ns [new Simulator]

$ns use-newtrace

#Define different colors for data flows (for NAM)

$ns color 1 Red

62
Appendix

$ns color 2 Cyan

#Open the ns trace file

set nf [open out.nam w]

$ns namtrace-all $nf

set files(0) [open tcpReno.tr w]

set files(1) [open Udp.tr w]

set val(stop) 200 ;# time of simulation end

set val(nn) 8 ;# number of nodes

Define a 'finish' procedure

proc stop {} {

 global ns nf files

 $ns flush-trace

Close the NAM trace file

 close $nf

Close the output file

 close $files(0)

 close $files(1)

#Execute xgraph tp display the result

exec xgraph tcpReno.tr Udp.tr -geometry 800*400 &

#Execute NAM on trace file

exec nam out.nam &

 exit 0

}

#Create 8 nodes

for {set i 0} {$i < $val(nn)} {incr i} {

 set n($i) [$ns node]

}

#Create a duplex link between the nodes

63
Appendix

$ns duplex-link $n(0) $n(2) 5Mb 10ms DropTail

$ns duplex-link $n(2) $n(4) 10Mb 10ms DropTail

$ns duplex-link $n(4) $n(5) 5Mb 5ms DropTail

$ns duplex-link $n(5) $n(6) 5Mb 10ms DropTail

$ns duplex-link $n(1) $n(3) 10Mb 5ms DropTail

$ns duplex-link $n(3) $n(4) 10Mb 10ms DropTail

$ns duplex-link $n(5) $n(7) 5Mb 10ms DropTail

#Set node position in nam

$ns duplex-link-op $n(0) $n(2) orient right-down

$ns duplex-link-op $n(2) $n(4) orient right-down

$ns duplex-link-op $n(4) $n(5) orient right

$ns duplex-link-op $n(5) $n(6) orient right-up

$ns duplex-link-op $n(1) $n(3) orient rightp-u

$ns duplex-link-op $n(3) $n(4) orient right-up

$ns duplex-link-op $n(5) $n(7) orient right-down

#Create a TCP agent and attach it to node n0.The flow between n0 and n6

set src_tcp [new Agent/TCP]

$ns attach-agent $n(0) $src_tcp

$src_tcp set class_ 1

$src_tcp set maxcwnd_ 64 ;# max congestion window size

#Create sink node and attach it to node 6 (n6)

set sink_tcp [new Agent/TCPSink/DelAck]

$ns attach-agent $n(6) $sink_tcp

$ns connect $src_tcp $sink_tcp

#Setup FTP over TCP connection

set ftp [new Application/FTP]

$ftp set packetSize_ 1024

$ftp attach-agent $src_tcp

64
Appendix

#$ns at 0.5 "$tcp advanceby 1"

$ns at 0.0 "$ftp start"

Create UDP agent and attach it to node 1.UDP flow between n1 and n7

set src_udp [new Agent/UDP]

$ns attach-agent $n(1) $src_udp

$src_udp set class_ 2

#Create sink node abd attach to node 7 (n7)

set sink_udp [new Agent/LossMonitor]

$ns attach-agent $n(7) $sink_udp

$ns connect $src_udp $sink_udp

#Setup a CBR over UDP connection

set cbr [new Application/Traffic/CBR]

$cbr set packetSize_ 1024

$cbr set rate_ 0.2Mb

$cbr attach-agent $src_udp

$ns at 0.0 "$cbr start"

printing throughput of each client and channel utilization

set last_udp 0.0

set last_tcp 0.0

proc plotFiles {} {

 global ns files last_udp last_tcp sink_udp sink_tcp val

 set time 0.1

 set now [$ns now]

 set total 0.0

 set cur_tcp [$sink_tcp set bytes_]

 set temp [expr cur_tcp-last_tcp]

 puts $files(0) "$now [expr $temp*8/$time]"

 set total [expr $total+$temp]

65
Appendix

 set cur_udp [$sink_udp set bytes_]

 set temp [expr cur_udp-last_udp]

 puts $files(1) "$now [expr $temp*8/$time]"

 set total [expr $total+$temp]

 set last_udp $cur_udp

 set last_tcp $cur_tcp

 set nextTime [expr $now+$time]

 if { $nextTime <= $val(stop) } {

 $ns at $nextTime "plotFiles"

 }

}

$ns at 0.1 "plotFiles"

telling nodes when the simulation ends

for {set i 0} {$i < $val(nn)} {incr i} {

 $ns at $val(stop) "$n($i) reset";

}

$ns at $val(stop) "$ftp stop"

$ns at $val(stop) "$cbr stop"

$ns at $val(stop) "stop"

$ns at 200.1 "puts \"end simulation\"; $ns halt"

$ns at 5.0 "stop"

#Run the simulation

$ns run

2.2 Script(4Mb rate of UDP)

 #Create a simulator object

66
Appendix

 set ns [new Simulator]

 $ns use-newtrace

 #Define different colors for data flows (for NAM)

 $ns color 1 red

 $ns color 2 Cyan

 #Open the ns trace file

 set nf [open out.nam w]

 $ns namtrace-all $nf

 set files(0) [open tcpReno.tr w]

 set files(1) [open Udp.tr w]

 set val(stop) 200 ;# time of simulation end

 set val(nn) 8 ;# number of nodes

 # Define a 'finish' procedure

 proc stop {} {

 global ns nf files

 $ns flush-trace

 # Close the NAM trace file

 close $nf

 # Close the output file

 close $files(0)

 close $files(1)

 #Execute xgraph tp display the result

 exec xgraph tcpReno.tr Udp.tr -geometry 800*400 &

 #Execute NAM on trace file

 exec nam out.nam &

 exit 0

67
Appendix

 }

 #Create 8 nodes

 for {set i 0} {$i < $val(nn)} {incr i} {

 set n($i) [$ns node]

 }

 #Create a duplex link between the nodes

 $ns duplex-link $n(0) $n(2) 5Mb 10ms DropTail

 $ns duplex-link $n(2) $n(4) 10Mb 10ms DropTail

 $ns duplex-link $n(4) $n(5) 5Mb 5ms DropTail

 $ns duplex-link $n(5) $n(6) 5Mb 10ms DropTail

 $ns duplex-link $n(1) $n(3) 10Mb 5ms DropTail

 $ns duplex-link $n(3) $n(4) 10Mb 10ms DropTail

 $ns duplex-link $n(5) $n(7) 5Mb 10ms DropTail

 #Set node position in nam

 $ns duplex-link-op $n(0) $n(2) orient right-down

 $ns duplex-link-op $n(2) $n(4) orient right-down

 $ns duplex-link-op $n(4) $n(5) orient right

 $ns duplex-link-op $n(5) $n(6) orient right-up

 $ns duplex-link-op $n(1) $n(3) orient rightp-u

 $ns duplex-link-op $n(3) $n(4) orient right-up

 $ns duplex-link-op $n(5) $n(7) orient right-down

 #Create a TCP agent and attach it to node n0.The flow between n0 and n6

 set src_tcp [new Agent/TCP/Reno]

 $ns attach-agent $n(0) $src_tcp

 $src_tcp set class_ 1

68
Appendix

 $src_tcp set maxcwnd_ 64 ;# max congestion window size

 #Create sink node and attach it to node 6 (n6)

 set sink_tcp [new Agent/TCPSink/DelAck]

 $ns attach-agent $n(6) $sink_tcp

 $ns connect $src_tcp $sink_tcp

 #Setup FTP over TCP connection

 set ftp [new Application/FTP]

 $ftp set packetSize_ 1024

 $ftp attach-agent $src_tcp

 #$ns at 0.5 "$tcp advanceby 1"

 $ns at 0.0 "$ftp start"

 # Create UDP agent and attach it to node 1.UDP flow between n1 and n7

 set src_udp [new Agent/UDP]

 $ns attach-agent $n(1) $src_udp

 $src_udp set class_ 2

 #Create sink node abd attach to node 7 (n7)

 set sink_udp [new Agent/LossMonitor]

 $ns attach-agent $n(7) $sink_udp

 $ns connect $src_udp $sink_udp

 #Setup a CBR over UDP connection

 set cbr [new Application/Traffic/CBR]

 $cbr set packetSize_ 1024

 $cbr set rate_ 4Mb

 $cbr attach-agent $src_udp

 $ns at 0.0 "$cbr start"

 # printing throughput of each client and channel utilization

69
Appendix

 set last_udp 0.0

 set last_tcp 0.0

 proc plotFiles {} {

 global ns files last_udp last_tcp sink_udp sink_tcp val

 set time 0.1

 set now [$ns now]

 set total 0.0

 set cur_tcp [$sink_tcp set bytes_]

 set temp [expr cur_tcp-last_tcp]

 puts $files(0) "$now [expr $temp*8/$time]"

 set total [expr $total+$temp]

 set cur_udp [$sink_udp set bytes_]

 set temp [expr cur_udp-last_udp]

 puts $files(1) "$now [expr $temp*8/$time]"

 set total [expr $total+$temp]

 set last_udp $cur_udp

 set last_tcp $cur_tcp

 set nextTime [expr $now+$time]

 if { $nextTime <= $val(stop) } {

 $ns at $nextTime "plotFiles"

 }

 }

 $ns at 0.1 "plotFiles"

 # telling nodes when the simulation ends

 for {set i 0} {$i < $val(nn)} {incr i} {

 $ns at $val(stop) "$n($i) reset";

70
Appendix

 }

 $ns at $val(stop) "$ftp stop"

 $ns at $val(stop) "$cbr stop"

 $ns at $val(stop) "stop"

 $ns at 200.1 "puts \"end simulation\"; $ns halt"

 $ns at 5.0 "stop"

 #Run the simulation

 $ns run

3.NEWRENO.
3.1 Script(200Kb rate of UDP)

#Create a simulator object

set ns [new Simulator]

$ns use-newtrace

#Define different colors for data flows (for NAM)

$ns color 1 Red

$ns color 2 Cyan

#Open the ns trace file

set nf [open out.nam w]

$ns namtrace-all $nf

set files(0) [open tcpNewreno.tr w]

set files(1) [open Udp.tr w]

set val(stop) 200 ;# time of simulation end

set val(nn) 8 ;# number of nodes

Define a 'finish' procedure

71
Appendix

proc stop {} {

 global ns nf files

 $ns flush-trace

Close the NAM trace file

 close $nf

Close the output file

 close $files(0)

 close $files(1)

#Execute xgraph tp display the result

exec xgraph tcpNewreno.tr Udp.tr -geometry 800*400 &

#Execute NAM on trace file

exec nam out.nam &

 exit 0

}

#Create 8 nodes

for {set i 0} {$i < $val(nn)} {incr i} {

 set n($i) [$ns node]

}

#Create a duplex link between the nodes

$ns duplex-link $n(0) $n(2) 5Mb 10ms DropTail

$ns duplex-link $n(2) $n(4) 10Mb 10ms DropTail

$ns duplex-link $n(4) $n(5) 5Mb 5ms DropTail

$ns duplex-link $n(5) $n(6) 5Mb 10ms DropTail

$ns duplex-link $n(1) $n(3) 10Mb 5ms DropTail

$ns duplex-link $n(3) $n(4) 10Mb 10ms DropTail

$ns duplex-link $n(5) $n(7) 5Mb 10ms DropTail

#Set node position in nam

$ns duplex-link-op $n(0) $n(2) orient right-down

72
Appendix

$ns duplex-link-op $n(2) $n(4) orient right-down

$ns duplex-link-op $n(4) $n(5) orient right

$ns duplex-link-op $n(5) $n(6) orient right-up

$ns duplex-link-op $n(1) $n(3) orient rightp-u

$ns duplex-link-op $n(3) $n(4) orient right-up

$ns duplex-link-op $n(5) $n(7) orient right-down

#Create a TCP agent and attach it to node n0.The flow between n0 and n6

set src_tcp [new Agent/TCP]

$ns attach-agent $n(0) $src_tcp

$src_tcp set class_ 1

$src_tcp set maxcwnd_ 64 ;# max congestion window size

#Create sink node and attach it to node 6 (n6)

set sink_tcp [new Agent/TCPSink/DelAck]

$ns attach-agent $n(6) $sink_tcp

$ns connect $src_tcp $sink_tcp

#Setup FTP over TCP connection

set ftp [new Application/FTP]

$ftp set packetSize_ 1024

$ftp attach-agent $src_tcp

#$ns at 0.5 "$tcp advanceby 1"

$ns at 0.0 "$ftp start"

Create UDP agent and attach it to node 1.UDP flow between n1 and n7

set src_udp [new Agent/UDP]

$ns attach-agent $n(1) $src_udp

$src_udp set class_ 2

#Create sink node abd attach to node 7 (n7)

set sink_udp [new Agent/LossMonitor]

$ns attach-agent $n(7) $sink_udp

73
Appendix

$ns connect $src_udp $sink_udp

#Setup a CBR over UDP connection

set cbr [new Application/Traffic/CBR]

$cbr set packetSize_ 1024

$cbr set rate_ 0.2Mb

$cbr attach-agent $src_udp

$ns at 0.0 "$cbr start"

printing throughput of each client and channel utilization

set last_udp 0.0

set last_tcp 0.0

proc plotFiles {} {

 global ns files last_udp last_tcp sink_udp sink_tcp val

 set time 0.1

 set now [$ns now]

 set total 0.0

 set cur_tcp [$sink_tcp set bytes_]

 set temp [expr cur_tcp-last_tcp]

 puts $files(0) "$now [expr $temp*8/$time]"

 set total [expr $total+$temp]

 set cur_udp [$sink_udp set bytes_]

 set temp [expr cur_udp-last_udp]

 puts $files(1) "$now [expr $temp*8/$time]"

 set total [expr $total+$temp]

 set last_udp $cur_udp

 set last_tcp $cur_tcp

 set nextTime [expr $now+$time]

 if { $nextTime <= $val(stop) } {

74
Appendix

 $ns at $nextTime "plotFiles"

 }

}

$ns at 0.1 "plotFiles"

telling nodes when the simulation ends

for {set i 0} {$i < $val(nn)} {incr i} {

 $ns at $val(stop) "$n($i) reset";

}

$ns at $val(stop) "$ftp stop"

$ns at $val(stop) "$cbr stop"

$ns at $val(stop) "stop"

$ns at 200.1 "puts \"end simulation\"; $ns halt"

$ns at 5.0 "stop"

#Run the simulation

$ns run

3.2 Script(4Mb rate of UDP)

 #Create a simulator object

 set ns [new Simulator]

 $ns use-newtrace

 #Define different colors for data flows (for NAM)

 $ns color 1 red

 $ns color 2 Cyan

 #Open the ns trace file

 set nf [open out.nam w]

 $ns namtrace-all $nf

75
Appendix

 set files(0) [open tcpNewreno.tr w]

 set files(1) [open Udp.tr w]

 set val(stop) 200 ;# time of simulation end

 set val(nn) 8 ;# number of nodes

 # Define a 'finish' procedure

 proc stop {} {

 global ns nf files

 $ns flush-trace

 # Close the NAM trace file

 close $nf

 # Close the output file

 close $files(0)

 close $files(1)

 #Execute xgraph tp display the result

 exec xgraph tcpNewreno.tr Udp.tr -geometry 800*400 &

 #Execute NAM on trace file

 exec nam out.nam &

 exit 0

 }

 #Create 8 nodes

 for {set i 0} {$i < $val(nn)} {incr i} {

 set n($i) [$ns node]

 } #Create a duplex link between the nodes

 $ns duplex-link $n(0) $n(2) 5Mb 10ms DropTail

 $ns duplex-link $n(2) $n(4) 10Mb 10ms DropTail

 $ns duplex-link $n(4) $n(5) 5Mb 5ms DropTail

76
Appendix

 $ns duplex-link $n(5) $n(6) 5Mb 10ms DropTail

 $ns duplex-link $n(1) $n(3) 10Mb 5ms DropTail

 $ns duplex-link $n(3) $n(4) 10Mb 10ms DropTail

 $ns duplex-link $n(5) $n(7) 5Mb 10ms DropTail

 #Set node position in nam

 $ns duplex-link-op $n(0) $n(2) orient right-down

 $ns duplex-link-op $n(2) $n(4) orient right-down

 $ns duplex-link-op $n(4) $n(5) orient right

 $ns duplex-link-op $n(5) $n(6) orient right-up

 $ns duplex-link-op $n(1) $n(3) orient rightp-u

 $ns duplex-link-op $n(3) $n(4) orient right-up

 $ns duplex-link-op $n(5) $n(7) orient right-down

 #Create a TCP agent and attach it to node n0.The flow between n0 and n6

 set src_tcp [new Agent/TCP/Newreno]

 $ns attach-agent $n(0) $src_tcp

 $src_tcp set class_ 1

 $src_tcp set maxcwnd_ 64 ;# max congestion window size

 #Create sink node and attach it to node 6 (n6)

 set sink_tcp [new Agent/TCPSink/DelAck]

 $ns attach-agent $n(6) $sink_tcp

 $ns connect $src_tcp $sink_tcp

 #Setup FTP over TCP connection

 set ftp [new Application/FTP]

 $ftp set packetSize_ 1024

 $ftp attach-agent $src_tcp

 #$ns at 0.5 "$tcp advanceby 1"

77
Appendix

 $ns at 0.0 "$ftp start"

 # Create UDP agent and attach it to node 1.UDP flow between n1 and n7

 set src_udp [new Agent/UDP]

 $ns attach-agent $n(1) $src_udp

 $src_udp set class_ 2

 #Create sink node abd attach to node 7 (n7)

 set sink_udp [new Agent/LossMonitor]

 $ns attach-agent $n(7) $sink_udp

 $ns connect $src_udp $sink_udp

 #Setup a CBR over UDP connection

 set cbr [new Application/Traffic/CBR]

 $cbr set packetSize_ 1024

 $cbr set rate_ 4Mb

 $cbr attach-agent $src_udp

 $ns at 0.0 "$cbr start"

 # printing throughput of each client and channel utilization

 set last_udp 0.0

 set last_tcp 0.0

 proc plotFiles {} {

 global ns files last_udp last_tcp sink_udp sink_tcp val

 set time 0.1

 set now [$ns now]

 set total 0.0

 set cur_tcp [$sink_tcp set bytes_]

 set temp [expr cur_tcp-last_tcp]

 puts $files(0) "$now [expr $temp*8/$time]"

78
Appendix

 set total [expr $total+$temp]

 set cur_udp [$sink_udp set bytes_]

 set temp [expr cur_udp-last_udp]

 puts $files(1) "$now [expr $temp*8/$time]"

 set total [expr $total+$temp]

 set last_udp $cur_udp

 set last_tcp $cur_tcp

 set nextTime [expr $now+$time]

 if { $nextTime <= $val(stop) } {

 $ns at $nextTime "plotFiles"

 }

 }

 $ns at 0.1 "plotFiles"

 # telling nodes when the simulation ends

 for {set i 0} {$i < $val(nn)} {incr i} {

 $ns at $val(stop) "$n($i) reset";

 }

 $ns at $val(stop) "$ftp stop"

 $ns at $val(stop) "$cbr stop"

 $ns at $val(stop) "stop"

 $ns at 200.1 "puts \"end simulation\"; $ns halt"

 $ns at 5.0 "stop"

 #Run the simulation

 $ns run

79
Appendix

4.VEGAS.
4.1 Script(200Kb rate of UDP)

#Create a simulator object

set ns [new Simulator]

$ns use-newtrace

#Define different colors for data flows (for NAM)

$ns color 1 Red

$ns color 2 Cyan

#Open the ns trace file

set nf [open out.nam w]

$ns namtrace-all $nf

set files(0) [open tcpVegas.tr w]

set files(1) [open Udp.tr w]

set val(stop) 200 ;# time of simulation end

set val(nn) 8 ;# number of nodes

Define a 'finish' procedure

proc stop {} {

 global ns nf files

 $ns flush-trace

Close the NAM trace file

 close $nf

Close the output file

 close $files(0)

 close $files(1)

#Execute xgraph tp display the result

80
Appendix

exec xgraph tcpVegas.tr Udp.tr -geometry 800*400 &

#Execute NAM on trace file

exec nam out.nam &

 exit 0

}

#Create 8 nodes

for {set i 0} {$i < $val(nn)} {incr i} {

 set n($i) [$ns node]

}

#Create a duplex link between the nodes

$ns duplex-link $n(0) $n(2) 5Mb 10ms DropTail

$ns duplex-link $n(2) $n(4) 10Mb 10ms DropTail

$ns duplex-link $n(4) $n(5) 5Mb 5ms DropTail

$ns duplex-link $n(5) $n(6) 5Mb 10ms DropTail

$ns duplex-link $n(1) $n(3) 10Mb 5ms DropTail

$ns duplex-link $n(3) $n(4) 10Mb 10ms DropTail

$ns duplex-link $n(5) $n(7) 5Mb 10ms DropTail

#Set node position in nam

$ns duplex-link-op $n(0) $n(2) orient right-down

$ns duplex-link-op $n(2) $n(4) orient right-down

$ns duplex-link-op $n(4) $n(5) orient right

$ns duplex-link-op $n(5) $n(6) orient right-up

$ns duplex-link-op $n(1) $n(3) orient rightp-u

$ns duplex-link-op $n(3) $n(4) orient right-up

$ns duplex-link-op $n(5) $n(7) orient right-down

#Create a TCP agent and attach it to node n0.The flow between n0 and n6

set src_tcp [new Agent/TCP]

$ns attach-agent $n(0) $src_tcp

81
Appendix

$src_tcp set class_ 1

$src_tcp set maxcwnd_ 64 ;# max congestion window size

#Create sink node and attach it to node 6 (n6)

set sink_tcp [new Agent/TCPSink/DelAck]

$ns attach-agent $n(6) $sink_tcp

$ns connect $src_tcp $sink_tcp

#Setup FTP over TCP connection

set ftp [new Application/FTP]

$ftp set packetSize_ 1024

$ftp attach-agent $src_tcp

#$ns at 0.5 "$tcp advanceby 1"

$ns at 0.0 "$ftp start"

Create UDP agent and attach it to node 1.UDP flow between n1 and n7

set src_udp [new Agent/UDP]

$ns attach-agent $n(1) $src_udp

$src_udp set class_ 2

#Create sink node abd attach to node 7 (n7)

set sink_udp [new Agent/LossMonitor]

$ns attach-agent $n(7) $sink_udp

$ns connect $src_udp $sink_udp

#Setup a CBR over UDP connection

set cbr [new Application/Traffic/CBR]

$cbr set packetSize_ 1024

$cbr set rate_ 0.2Mb

$cbr attach-agent $src_udp

$ns at 0.0 "$cbr start"

printing throughput of each client and channel utilization

 set last_udp 0.0

82
Appendix

 set last_tcp 0.0

 proc plotFiles {} {

 global ns files last_udp last_tcp sink_udp sink_tcp val

 set time 0.1

 set now [$ns now]

 set total 0.0

 set cur_tcp [$sink_tcp set bytes_]

 set temp [expr cur_tcp-last_tcp]

 puts $files(0) "$now [expr $temp*8/$time]"

 set total [expr $total+$temp]

 set cur_udp [$sink_udp set bytes_]

 set temp [expr cur_udp-last_udp]

 puts $files(1) "$now [expr $temp*8/$time]"

 set total [expr $total+$temp]

 set last_udp $cur_udp

 set last_tcp $cur_tcp

 set nextTime [expr $now+$time]

 if { $nextTime <= $val(stop) } {

 $ns at $nextTime "plotFiles"

 }

}

$ns at 0.1 "plotFiles"

telling nodes when the simulation ends

for {set i 0} {$i < $val(nn)} {incr i} {

 $ns at $val(stop) "$n($i) reset";

}

$ns at $val(stop) "$ftp stop"

$ns at $val(stop) "$cbr stop"

83
Appendix

$ns at $val(stop) "stop"

$ns at 200.1 "puts \"end simulation\"; $ns halt"

$ns at 5.0 "stop"

#Run the simulation

$ns run

4.2 Script(4Mb rate of UDP)

 #Create a simulator object

 set ns [new Simulator]

$ns use-newtrace

 #Define different colors for data flows (for NAM)

 $ns color 1 red

 $ns color 2 Cyan

 #Open the ns trace file

 set nf [open out.nam w]

 $ns namtrace-all $nf

 set files(0) [open tcpVegas.tr w]

 set files(1) [open Udp.tr w]

 set val(stop) 200 ;# time of simulation end

 set val(nn) 8 ;# number of nodes

 # Define a 'finish' procedure

 proc stop {} {

 global ns nf files

 $ns flush-trace

 # Close the NAM trace file

84
Appendix

 close $nf

 # Close the output file

 close $files(0)

 close $files(1)

 #Execute xgraph tp display the result

 exec xgraph tcpVegas.tr Udp.tr -geometry 800*400 &

 #Execute NAM on trace file

 exec nam out.nam &

 exit 0

 }

 #Create 8 nodes

 for {set i 0} {$i < $val(nn)} {incr i} {

 set n($i) [$ns node]

 }

 #Create a duplex link between the nodes

 $ns duplex-link $n(0) $n(2) 5Mb 10ms DropTail

 $ns duplex-link $n(2) $n(4) 10Mb 10ms DropTail

 $ns duplex-link $n(4) $n(5) 5Mb 5ms DropTail

 $ns duplex-link $n(5) $n(6) 5Mb 10ms DropTail

 $ns duplex-link $n(1) $n(3) 10Mb 5ms DropTail

 $ns duplex-link $n(3) $n(4) 10Mb 10ms DropTail

 $ns duplex-link $n(5) $n(7) 5Mb 10ms DropTail

 #Set node position in nam

 $ns duplex-link-op $n(0) $n(2) orient right-down

 $ns duplex-link-op $n(2) $n(4) orient right-down

 $ns duplex-link-op $n(4) $n(5) orient right

85
Appendix

 $ns duplex-link-op $n(5) $n(6) orient right-up

 $ns duplex-link-op $n(1) $n(3) orient rightp-u

 $ns duplex-link-op $n(3) $n(4) orient right-up

 $ns duplex-link-op $n(5) $n(7) orient right-down

 #Create a TCP agent and attach it to node n0.The flow between n0 and n6

 set src_tcp [new Agent/TCP/Vegas]

 $ns attach-agent $n(0) $src_tcp

 $src_tcp set class_ 1

 $src_tcp set maxcwnd_ 64 ;# max congestion window size

 #Create sink node and attach it to node 6 (n6)

 set sink_tcp [new Agent/TCPSink/DelAck]

 $ns attach-agent $n(6) $sink_tcp

 $ns connect $src_tcp $sink_tcp

 #Setup FTP over TCP connection

 set ftp [new Application/FTP]

 $ftp set packetSize_ 1024

 $ftp attach-agent $src_tcp

 #$ns at 0.5 "$tcp advanceby 1"

 $ns at 0.0 "$ftp start"

 # Create UDP agent and attach it to node 1.UDP flow between n1 and n7

 set src_udp [new Agent/UDP]

 $ns attach-agent $n(1) $src_udp

 $src_udp set class_ 2

 #Create sink node abd attach to node 7 (n7)

 set sink_udp [new Agent/LossMonitor]

 $ns attach-agent $n(7) $sink_udp

86
Appendix

 $ns connect $src_udp $sink_udp

 #Setup a CBR over UDP connection

 set cbr [new Application/Traffic/CBR]

 $cbr set packetSize_ 1024

 $cbr set rate_ 4Mb

 $cbr attach-agent $src_udp

 $ns at 0.0 "$cbr start"

 # printing throughput of each client and channel utilization

 set last_udp 0.0

 set last_tcp 0.0

 proc plotFiles {} {

 global ns files last_udp last_tcp sink_udp sink_tcp val

 set time 0.1

 set now [$ns now]

 set total 0.0

 set cur_tcp [$sink_tcp set bytes_]

 set temp [expr cur_tcp-last_tcp]

 puts $files(0) "$now [expr $temp*8/$time]"

 set total [expr $total+$temp]

 set cur_udp [$sink_udp set bytes_]

 set temp [expr cur_udp-last_udp]

 puts $files(1) "$now [expr $temp*8/$time]"

 set total [expr $total+$temp]

 set last_udp $cur_udp

 set last_tcp $cur_tcp

 set nextTime [expr $now+$time]

87
Appendix

 if { $nextTime <= $val(stop) } {

 $ns at $nextTime "plotFiles"

 }

 }

 $ns at 0.1 "plotFiles"

 # telling nodes when the simulation ends

 for {set i 0} {$i < $val(nn)} {incr i} {

 $ns at $val(stop) "$n($i) reset";

 }

 $ns at $val(stop) "$ftp stop"

 $ns at $val(stop) "$cbr stop"

 $ns at $val(stop) "stop"

 $ns at 200.1 "puts \"end simulation\"; $ns halt"

 $ns at 5.0 "stop"

 #Run the simulation

 $ns run

88
Appendix

Appendix C installation steps of NS2

Ns2.34 installation steps.

1. “tar xvzf ns-allinone-2.34-gcc32.tar.gz”,

followed by “cd ns-allinone-2.34”

2. Suppose you are in “/home/shhd/ns-allinone-2.34”.

Execute “./install”,

3. Input the following lines to the “bashrc” file. NSALL=/home/shhd/ns-allinone-

2.34

 otcl=/home/shhd/ns-allinone-2.34/otcl-1.0a5 tclcl=/home/shhd/ns-allinone-

2.34/tclcl-1.0b9 TCL=/home/shhd/ns-allinone-2.34/tclbox TK=/home/shhd/ns-

allinone-2.34/tkbox export PATH=“$PATH:/home/shhd/ns-allinone-

2.34/bin:/home/shhd/ns-allinone-2.34/tcl8.0.4/unix:/home/shhd/ns-allinone-

2.34/tk8.0.4/unix”

export LD_LIBRARY_PATH=“$LD_LIBRARY_PATH:/home/shhd/ns-allinone-

2.34/otcl-1.0a5:/home/shhd/ns-allinone-2.34/lib” export

TCL_LIBRARY=“$TCL_LIBRARY:/home/shhd/ns-allinone-2.34/tcl8.0.4/lbrary” Save

then quit the “bashrc” file. Enter “/home/shhd/ns-allinone-2.34/ns-2.34” and run

“./validate” to validate if the installation is complete.

4.Validate it

$ cd ns-2.33

$./validate

Thus ns-allinone-2.34 installation has come to an end.

