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A B S T R A C T

The fluctuating frequency in a power grid is the major stability challenge duo to the unpredictable power de
mand of costumers during the time. To address this issue, automatic generation controller (AGC) is employed. 
The AGC based on a proportional integral derivative (PID) approach is popularly utilised owing to its soft 
implementation and lower expenditure. However, it ripples to handle the standard frequency of a multi-area 
power grid that occurs in a competitive load-demand case, because of the high sensitivity of its uncertain pa
rameters. In this paper, a Hybrid Aquila Optimizer-Sine Cosine algorithm (HSCAO) is designed for addressing the 
sensitivity of the PID-AGC parameters specifically for the multi-area power system network. The suggested al
gorithm is assessed based on CEC-2019, and classical benchmark issues with various dimensions to validate its 
performance and address the better fits of the algorithm parameters adequately. Also, a statistical analysis 
technique is conducted using Wilcoxon’s test and Friedman test to demonstrate the supervise performance of the 
HSCAO optimisation regarding to other relative optimal algorithms. A two-area power system network is 
simulated using MATLAB environment to implement the proposed AGC system. The outcomes prove that the 
optimal PID-AGC method based on HSCAO technique demonstrates its ability to address the simple and complex 
fluctuations of load demands quickly. Also, it is the most robust to supervise the frequency response under fault 
condition test, resulting in, achieving the lowest ITAE index of 5.2s compared to the conventional fuzzy logic 
control-AGC and the conventional PID-AGC of 10.9s and 17.4s respectively.

List of notations
Variables Notations
Ω(s) Accelerating generator
H Inertia of generator
ΔPm Historical change in mechanical power
Δpe Historical change in electrical power
ΔPL Resister’s load-demand
Δω Motor’s miss
Pref Generating power
R Regulator- speed
Pg Electrical power production
τg Time-constant speed of the turbine
ΔPv Change in steam size of the turbine

e1 and e2 AC-frequency errors of the Areas 1& 2.
Δf Frequency deviation in power system network
α The synchronizing coefficient for Tie Line
Kd Derivative gain of PID
Ki Integral gain of PID
Kp Proportional gain of PID
Yt

i and Yt+1
i ith location of the current solution during iteration ’t’ and 

the next iteration ’t+1′, respectively
r1, r2, r3 and r4 Randomly generated integers of SCA algorithm
Pt

i Most optimal solution at the ith position in the collection of 
solutions

T Highest iteration
t Present iteration
Ybest Optimal position
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Dim Dimension size
N Population size
LF(D) Levy flight distribution function
u and υ Values are generated at random from 0 to 1
A Fixed value of HSCAO algorithm that is established at 2.
β Fixed value of HSCAO algorithm that is established at 1.5.
r5 Number of search cycles ranging from 1 to 20
γ and δ Parameters for exploitation adjustment are set at 0.1
Lb & Ub Lower limit & upper bound.
QF(t) Quality measure of the search approach
G1 & G2 Aquila’s mobility factors
ΔPtie Tie Line power deviation
u1 & u2 Control inputs in Areas 1& 2.
ΔPg1 & ΔPg2 The output power deviations at governor
ΔPt1 & ΔPt2 The output deviations at Turbine
ΔP1=D1 The load disturbances in Areas 1
ΔP2=D2 The load disturbances in Areas 2.
K1&K2 The constants of Areas 1&2.
τP1&τP2 The time constants of Areas 1& 2.
ACE The processing error of power system
B1 & B2 The Tie-Line frequency bias at Areas 1&2.

1. Introduction

Regrading to the multi-generation units and the electrical fluctuating 
demands on the modern power grid, the frequency response of a power 
system network is changing dramatically. This is causing the instability 
of the power generation and the sensitivity of a frequency level specif
ically for the muti-area power network. Hence, automatic generation 
controller (AGC) is utilised to retrieve the frequency response and 
regulate the power delivery by adjusting the accelerated governor speed 
of the generator units based on considering the size of fuel, resulting in, 
matching the power delivery with the power demand [1]. Consequently, 
the frequency level restores to the standard value for the power system. 
In the first design prototype of AGC, the researchers proposed the 
flywheel controller for the AC-machine of generation to dampen the 
frequency oscillation. However, it is not addressing the oscillation sup
pression of the system when the loads are changing rapidly due to the 
complex functionality of the AGC [2]. To design the accurate AGC in the 
significant uncertainty of the multi-area power network, a robust control 
system is required. This is because the robust control system exhibits 
lower sensitivities for the change of highly parameter variations.

Recently, a proportional-integral-derivative (PID) has been added to 
AGC system as a compensator because of its simpler accomplishment 
and lower expenditure when compared with the classical control system 
[3]. However, it faces the high frequency sensitivity under a competitive 
load-demand specifically for the multi-area power grid owing to its 
constant parameters, resulting in, poor dynamic performance. Hence, 
several techniques had been used to adjust the parameters of the PID 
controller. Among them, the authors in [4] proposed a novel PID 
controller based on fuzzy logic controller (FLC) for the AGC system of a 
two-area grid-connected system. The FLC is employed to address the 
fixed elements of the PID controller adequately using the membership 
function tools. The results of this proposal show that it has ability to 
demonstrate the oscillations in the frequency response for various power 
generation tests. Next, the authors in [5] designed a hybrid FLC-PID 
controller with filter-fractional order integral for a two-area AGC sys
tem. Firstly, the FLC technique is used to enhance the input of PID 
controller, then, the filter-fractional order integral is demonstrated the 
output of PID controller. The results of this study prove that the pro
posed method address the various load disturbances when it is compared 
with different conventional methods. Similarity, the scholars in [6] 
employed the PID controller based on the type-2 of the FLC method for 
the AGC system of a two-area grid network. The tuning parameters of 
the FLC-AGC system is addressed in this work using a novel adaptive 
symbiotic organism search technique. The outcomes of this work show 

that it returns the zero-point of frequency level with less undershoot, 
overshoot and settling time. Although, those previous studies have been 
provided the optimal AGC system under various states. However, they 
did not discuss the ITAE performance index for the power system 
network under an unbalance disturbance case. Further, the studies are 
not cover all condition states.

In advanced step, the scholars in [7] used a developed algorithm 
such as sine-cosine algorithm to regulate the memberships of the FLC 
technique that is utilised in PID parameters. Then, this controller 
method is applied on the AGC controller of a multi-area power system 
network under different tests. The findings of this research prove that 
the proposed method is the highest robust to address the load distur
bance tests for diverse cases. Consequently, the scholar in [8] also used a 
grey wolf technique which is classified as advanced algorithm to opti
mise the control gain of PID-AGC controller for three-area power 
network. Then, the FLC technique is implemented to improve the PID 
elements. The results of this research demonstrate that the proposed 
method is well supervisor to restore the frequency level of the three-area 
of the power grid under various simulation tests. In other side, the au
thors in [9] optimised a FLC-PID controller based on dragonfly algo
rithm for AGC system. Hence, the scaling factors of this AGC design is 
proposed based on the memberships of the FLC, resulting in, addressing 
the gains of the PID controller. The outcomes of this work prove that this 
proposal restores the frequency system of simulation test under the 
linearity and non-linearity operation works.

In the same year, the authors in [10] presented an optimal hybrid 
FLC-PID controller based on modified sine-cosine algorithm for two-area 
of the AGC system with four generation units. This modified algorithm is 
employed to adjust the elements of the FLC-PID controller based on 
two-steps. As results, the standard frequency state of the power grid test 
is addressed in a lower transient time with less rising undershoot and 
overshoot. While, the researchers in [11] designed the AGC system for 
multi-area power network based on interval type-2 FLC-PID technique 
to address the huge action of frequency diversion. Then, a deep 
Q-network algorithm is used to adjust the function design of the FLC 
under various operating conditions. The finding results of this work 
prove that it is improving the system performances of the AGC to carry 
out the frequency response level at steady state error with the short time. 
Alternatively, a novel fractional order integral-tilt-derivative controller 
for a multi-area AGC system was proposed by the authors in [12]. The 
AGC system’s settings are then optimized using a meta-heuristic tech
nique based on different blocks. This proposed method proves that it is 
more robust to address the various of power parameters until 50 % of 
input error signals. Lastly, the authors in [13] used an arithmetic opti
mized African vulture algorithm to optimise the proposed FLC-PID 
controller for AGC system. A hybrid deregulating power system for 
classical and renewable energy resources are simulated to assess the 
vestige of this proposal. The outcomes show that the proposed method is 
addressed the performance of the AGC by enhance its fitness up to 40 %. 
Recently, the authors in [14] developed a novel algorithm based on 
Aquila Optimizer to tune the parameters of the PID-AGC for a hybrid 
power system network. Then, it is compared with the popular optimi
sation algorithm such as particle swarm optimisation and whale opti
mization algorithm under a deregulated case. Hence, the results prove 
that it validates to address the stability of the hybrid power system at 
this type of the fault case. In last years, the optimal parameters of 
PID-AGC controller based on the neural network technique is used such 
as in [15]. This type of system shows a higher performance to avoid the 
load disturbances when it is applied on multiarea power grid. However, 
it requires priory data to train it on unpredictive cases.

As noticed that, the provirus studies show the efficiently of the AGC 
system based on the optimised PID controller using advanced optimi
sation techniques, however, they presented a complex prototype of the 
control system regarding to the hybrid controller stages. In addition, the 
processing optimisation time is not address which is considered the most 
important factor in the transiting case of the frequency response. Hence, 
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hybrid algorithms that have a higher level of processing time have been 
gained popularity and are being used widely in industrial applications 
that require the faster processing time with designing a simpler proto
type optimisation control tool [16].

In this paper, a hybrid aquila optimizer-sine-cosine algorithm 
(HSCAO) that has a faster processing time is employed to address the 
parameters of a PID-AGC for a two-area power system accurately. To 
validate the performance and address the parameters of this hybrid al
gorithm, CEC-2019, and classical benchmark issues with various di
mensions are applied. Then, a statistical analysis technique is conducted 
using Wilcoxon’s test and Friedman’s test to demonstrate the supervise 
performance of the HSCAO optimisation regarding to other relative 
optimising algorithms. Finally, an integral time absolute error (ITAE) 
performance index is used to calculate the time response of the fre
quency. Compared to the classical approaches for the FLC-AGC and PID- 
AGC systems, the robust PID-AGC system’s results demonstrate that it 
quickly restores the frequency level and controls the power delivery of 
the multi-area power system network under a variety of condition tests 
because of its quick response and low sensitivity. The rest of paper 
structure is sorted as follows: The modelling of a two- area power system 
is explained in Section 2. While, the design of the PID approach based on 
AGC system is characterized in Sections 3. Next, Section 4 introduces the 
HSCAO algorithm, whilst Section 5 discusses the proposed PID-AGC 
method based on the HSCAO algorithm. The major results of the 

application test are provided in section 6. Finally, Section 7 reports the 
outcome of this research.

2. Two-area power system modelling

Turbines, generators, and load-demand are the primary components 
of a grid-power system network. The main function of this system is to 
use the mechanical energy of the turbine to generate electrical energy in 
relation to the consumer’s load. Usually, steam turbine is employed for 
these types of the system owing to their higher performance. A governor 
and reheater are the main outlook part of the steam-turbine, as 
explained in Fig. 1.

It is work on matching the output energy of the generator with the 
consumer’s load. Consequently, the accelerating turbine changes regu
lating to the load-consumers by changing the size value of an input 
steam. As a results, the frequency response will offset from the standard 
value. Recently, several proposed controls are designed to adjust the 
speed error of turbine that called the AGC. The speed of the synchronous 
generator can be calculated mathematically based on Eq. (1): 

Ω(s) =
1

2Hs
(ΔPm − ΔPe) (1) 

On the other hand, Eq. (2) is used to calculate the consumer’s load. 

Fig. 1. The outlook of a standard steam turbine.

Fig. 2. Two-area grid-connected power system based on transfer function model.
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ΔPe = ΔPL + DΔω (2) 

To determine the steam turbine, Eq. (3) is utilised: 

ΔPm(s)
ΔPv(s)

=
1

1 + τT(s)
(3) 

Finally, Eq. (4) is used to compute the required steam. 

ΔPg = ΔPref . −
ΔΩ(s)

R
(4) 

Eq. (5) indicates how the generator’s output power varies with the 
steam turbine’s size: 

ΔPv(s) =
1

1 + τg
ΔPg(s) (5) 

Fig. 2. is represented the block-diagram of two-area power system 
network based on the transfer function. Then, the state-space equations 
of system are dravite to get simulation plant.

Typically, each power grid region has a governor, turbine, and load- 
demand block with a connecting line to its decentral AGC system. For 
the two-area of a power system network, 9 state equations are con
structed for this transfer function. Control input Equations are (6) and 
(7): 

u̇1 = G1(e1) = G1(B1x4 +x9) (6) 

u̇2 = G2(e2) = G2(B2x8 − x9) (7) 

As seen in Fig. 3, a state-space model for a two-area connected power 
network has been built, with all 9 states feedback.

Now, the simulation signals of input variable disturbances are rep
resented by ΔP1 and ΔP1

Next, Eq. (8-11) show first area state variables: 

x1 =

∫

e1 dt (8) 

x2 = ΔPg1 (9) 

x3 = ΔPT1 (10) 

x4 = Δf1 (11) 

While the state variables for 2nd area are explained in Eq. (12-15): 

x5 =

∫

e2 dt (12) 

x6 = ΔPg2 (13) 

x7 = ΔPT2 (14) 

x8 = Δf2 (15) 

Finally, Eq. (16) shows the connected Tie line power of two-area: 

x9 = ΔPtie (16) 

Then, the rotating mass and load-demand of power grid are repre
sented in Eq. (17-20): 

x4 + τp1ẋ4 = K1(x3 − x9 − D1) (17) 

ẋ4 =
K1

τp1
x3 −

K1

τp1
x4 −

K1

τp1
x9 −

K1

τp1
D1 (18) 

x8 + τp2ẋ8 = K2(x7 − x9 − D9) (19) 

ẋ8 =
K2

τp2
x7 −

K2

τp2
x8 +

K2

τp2
x9 −

K2

τp2
D1 (20) 

For steam turbine blocks state space equations are utilised as follows 
form (21-24): 

x3 + τT1ẋ3 = x2 (21) 

ẋ3 =
1

τT1
x2 −

1
τT1

x3 (22) 

x7 + τT2ẋ7 = x6 (23) 

ẋ7 =
1

τT2
x6 −

1
τT2

x7 (24) 

While, Eqs. (26-28) show block governor based on state space 
approach: 

Fig. 3. A power system network of two-are refer to state space approach.
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x2 + τg1ẋ2 = −
1
R1

x4 + u1 (25) 

ẋ2 = −
1

τg1
x2 −

1
τg1R1

x4 +
1

τg1
u1 (26) 

x6 + τg2ẋ6 = −
1
R2

x8 + u2 (27) 

ẋ6 = −
1

τg1
x6 −

1
τg2R2

x8 +
1

τg2
u2 (28) 

Finally, Eq. (29) presents the power system network of the tie line 
block; 

ẋ9 = 2παx8 − 2παx8 (29) 

Now, the state equations indicated before may be represented as a 
single-vector matrix, as shown in Eq. (30). 

ẋ = Ax + Bu + αD (30) 

where A, also known as the state-matrix, is a demission square matrix. 
while, the control and disturbance signals are represented by B and α, 
respectively, which are also the demission matrices. The vector of input 
state-space is represented by ’x’, of 9×1 matrix. The signal of AGC ‘u’ 
disturbance ‘d’ are represented by 2×1 vectors. The total-vectors ‘x’, ‘u’, 
and ‘d’ can be composited as shown in Eqs. (32-33) at this time. 

x = [ x1 x2 x3 x4 x5 x6 x7 x8 x9 ]
T (31) 

u =

[
u1
u2

]

D =

[
D1
D2

]

(32) 

Now, the 9 state-space equations are finally shown as the following 
matrices (33–35): 

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 B1 0 0 0 0 1

0
− 1
τg1

0
− 1

τg1R1
0 0 0 0 0

0
K1

τp1

− K1

τp1
0 0 0 0 0 0

0 0
1

τT1

− 1
τT1

0 0 0 0
1

τT1

0 0 0 0 0 0 0 B2 1

0 0 0 0 0
− 1
τg2

0
− 1

τg2R2
0

0 0 0 0 0
1

τt2

− 1
τt2

0 0

0 0 0 0 0 0
K1

τp2

− K1

τp2
0

0 0 0 2πσ 0 0 0 2πσ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(33) 

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0
1

τg1
0

0 0

0 0

0 0

0
1

τg2

0 0

0 0

0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(34) 

α =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0

0 0

0 0
− K1

τp1
0

0 0

0 0

0 0

0
− K1

τp2

0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(35) 

This state space equations will be used in the proposed algorithm 
code to find the accurate parameters of the PID-AGC control system.

3. A PID controller based on AGC

The PID controller is considered the most common type in 
manufacturing implementations owing to its simplicity and fastness. In 
addition, it does not require accurate model of the plant and can be 
understood by most engineers without being a controlling expert. 
However, it is not efficient for a highly dynamic variation time of pro
cessing plant such as AGC. The conventional of PID controller based on 
AGC can be expressed mathematically in Eq. (36): 

u(t) = KpACE + Ki

∫

ACEdt + Kd
dACE
d(t)

(36) 

In contrast, ACE stands for processing plant error, which can be 
expressed mathematically as Eq. (37): 

e(t) = ΔPtie + βΔf (37) 

Addressing the values of Kp, Ki and Kd are the major challenge to 
employ the robust PID controller in industrial plant. Consequently, the 
regulating of PID controller is the essential step to implement the effi
cient PID controller. Generally, there are two methods to tune the ele
ments of PID controller; try and error and Ziegler-Nichols. However, 
those methods are not suitable for the processing Plant that has a highly 
dynamic fluctuation such as the power system network. Hence, several 
researchers have investigated the optimisation techniques to adjust the 
parameters of PID controller. In this work, the HSCAO algorithm is 
utilised to address the parameters of PID controller adequately. Then, 
the robust PID controller is assessed under ITAE performance index 
method to determine the transient response time of the system under 
external disturbances.

4. Optimisation algorithms

4.1. Standard SCA algorithm

The SCA is described in ref. [17] to employ the characteristics of the 
trigonometric function’s sine and cosine that have been used to address 
the best candidate solutions. The fluctuating factors of a since cosine 
mathematical model are used to evaluate the best candidate solutions. 
Based on the likelihood that the global optimum will increase, it looks 
for optimization problems with an adequate number of random solu
tions and optimization steps. Hence, the following equations are the 
definitions of the search equations utilised in SCA to determine the 
position of candidate solutions: 

Yg+1
i = Yt

i + r1sin(r2) ×
⃒
⃒r3Pt

i − Yt
i

⃒
⃒ (38) 

Yt+1
i = Yt

i + r1cos(r2) ×
⃒
⃒r3Pt

i − Yt
i

⃒
⃒ (39) 
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Those Equations are used in the SCA methodology as follows: 

Yt+1
i =

{
Yt

i + r1sin (r2) ×
⃒
⃒r3Pt

i − Vt
i

⃒
⃒, r4 < 0.5

Yt
i + r1cos (r2) ×

⃒
⃒r3Pt

i − Vt
i

⃒
⃒, r4 ≥ 0.5

(40) 

The parameter r1 is the potential area where the solution and the 
target can be positioned, potentially within a specific region. This 
parameter allows for the examination and utilisation of a search area 
while maintaining an optimal balance between them. The process di
vides the maximum iteration count in half, allocating one half to 
diversification and the other half to enhancing exploration within a 

feasible search area [18]. The parameter r2 determines the orientation 
of the moment for a particular solution. The parameter r3 quantifies the 
significance of the weight assigned to Pt

i . By manipulating the parameter 
r4, Eq. (41) facilitates the transition from sine to cosine functions. The 
mathematical updates for the parameters r1, r2, r2, and r4 are as 
following: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

r1 = a − a ×
t
T

r2 = (2 × π) × rand

r3 = 2 × rand

r4 = rand

(41) 

Fig. 4. The flowchart of HSCAO algorithm.
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4.2. Modified Sine Cosine Algorithm (MSCA)

For meta-heuristic algorithms to grow increasingly proficient at 
producing results, they must maintain a balanced strategy between 
exploration and exploitation throughout the search process. However, 
other studies have shown that the SCA commonly fails to maintain this 
balance [19]. Particularly, when handling multimodal challenges of the 
classic SCA strategy has a tendency to overemphasise diversity at the 
expense of proper exploitation [18]. Only the best answer is kept for the 
next iteration in the typical SCA method, where all prior solutions are 
totally replaced with new ones with each iteration. Ineffective 

algorithmic exploration results from this method’s failure to take into 
account the potential contributions of individual solutions in defining 
effective search pathways. To address this issue, two modifications are 
suggested for the conventional SCA algorithm, these modifications 
involve the updated parameters, namely, r1 and r3 in Eq. (41), as well as 
an enhanced search equation to improve the overall performance of the 
algorithm by reaching a more accurate balance between exploration and 
exploitation. A new general set of parameters, r1 and r3, are produced by 
modifying Eq. (42) as following: 
⎧
⎪⎪⎨

⎪⎪⎩

r1 = 1 −
( t
T

)a× t
T

r3 = r1 × rand
(42) 

In the second modification, the current solution Yt
i in the first section 

is replaced with the most optimal solution Pt
i . By implementing this 

modification, the algorithm gains the ability to efficiently explore areas 
that show potential in close proximity to the individual optimal solu
tions. This adjustment is beneficial in cases where the optimal solution is 
limited to a specific area and does not offer sufficient guidance for the 
search process. Consequently, the Modified Eq. (40) can be formulated 
in the following manner: 

Yg+1
i =

{
Pt

i + r1sin (r2) ×
⃒
⃒r3Pt

i − Yt
i

⃒
⃒, r4 < 0.5

Pt
i + r1cos (r2) ×

⃒
⃒r3Pt

i − Yt
i

⃒
⃒, r4 ≥ 0.5

(43) 

4.3. Aquila Optimizer (AO)

In 2021, Abualigah et al.[20] introduced Aquila Optimizer such as 
advanced algorithm based on swarm intelligence. This algorithm draws 
inspiration from the versatile hunting tactics of the Aquila, which can be 
skilfully adapted its predatory methods based on the different types of 
prey. It hints its target with four potent behaviours: walking and grab
bing prey, contour fighting with a brief glide assault, low fighting with a 
slow fall attack, and high soaring with a vertical stoop. Therefore, four 
mathematical model have been utilised to explain the procedure of the 
AO algorithm

• Expanded Exploration (Y1)

Table 1 
Unimodal and multimodal test functions.

Problems Objective Function Range fmin D

F1 f(x) =
∑n

i=1
x2

i
[-100,100] 0 10,30

F2 f(x) =
∑n

i=0
|xi | +

∏n
i=0 |xi| [-10,10] 0 10,30

F3 f(x) =
∑d

i=1

(∑i
j=1

xj

)2 [-100,100] 0 10,30

F4 f(x) = maxi {|xi|,1 ≤ i ≤ n} [-100,100] 0 10,30
F5 f(x) =

∑n=1
i=1

[
100

(
x2

i − xi+1
)2

+ (1 − xi)
2
]

[-30,30] 0 10,30

F6 f(x) =
∑n

i=1
([xi + 0.5])2 [-100,100] 0 10,30

F7 f(x) =
∑n

i=0
ix4

i + random[0,1) [-128,128] 0 10,30

F8 f(x) =
∑n

i=1

(
− xisin

( ̅̅̅̅̅̅̅
|xi |

√ ))
[-500,500] ​ 10,30

F9 f(x) =
∑n

i=1

[
x2

i − 10cos(2πxi) + 10
] [-5.12,5.12] 0 10,30

F10
f(x) = − 20exp

(

− 0.2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
x2

i

√ )

− exp

(
1
n
∑n

i=1
cos(2πxi)

)

+ 20+ e
[-32,32] 0 10,30

F11
f(x) = 1+

1
4000

∑n
i=1

x2
i −

∏n
i=1 cos

(
xi
̅̅
i

√

)
[-600,600] 0 10,30

F12 f(x) =
π
n
{10sin(πy1)} +

∑n− 1
i− 1

(
yi − 1

)2[1+10sin2 ( πyi+1
)
+
∑n

i=1
u(xi, 10,100, 4)

]
, where yi = 1+

xi + 1
4

, u(xi ,a,k,

m){

K(xi − a)m if xi > a
0 − a ≤ xi ≥ a

K(− xi − a)m
− a ≤ xi

[-50,50] 0 10,30

F13
f(x) = 0.1

(

sin2(3πx1) +
∑n

i=1
(xi − 1)2

[1+

sin2(3πxi + 1)]+(xn − 1)21 + sin2(2πxn))+
∑n

i=1
u(xi ,5, 100,4)

[-50,50] 0 10,30

Table 2 
Comparative algorithm parameters.

Algorithm Parameter Value

SCA [16] A 2
WOA [23] A 

B
Decreased from 2 to 0 
2

SMA [24] vb and vc Decreased from 2 to 0
EO [25] r 

a 
GP

0.5 
4 
0.5

AO [20] α 
δ

0.1 
0.1

AOA [26] α 
µ

5 
0.5

MHA [27] bp 
R 
P 
l 
t 
CF 
Λ

0.05 
[0,1] 
exp 
Decreased from -2 to -1 
Decreased from 2 to 0 
adaptive 
sa

NMRA [28] bp 
Λ

0.5 
[0,1]

MFO [29] b 
t

1 
[-1,1]

GWO [30] А Decreased from 2 to 0
MPA [31] R 

P
[0,1] 
0.5
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In the first step, the initial approach (Y1) involved the Aquila iden
tifying the location of its prey and subsequently choosing an ideal 
hunting area by ascending to an elevated position with a prominent 
hump. The behaviour of Aquila uses as the mountain view to explore the 
search area that is mathematically represented as the following equa
tion: 

Y1(t+1) = Ybest(t) ×
(

1 −
t
T

)
+ (YM(t) − Ybest(t)× rand) (44) 

YM(t) =
1
N
∑N

i=1

Yi(i),∀j = 1,2,…,Dim (45) 

• Narrowed Exploration (Y2)

In the second step, the most popular method of Aquila hunting is 

addressed. It includes a brief glide to attack the prey subsequent to 
descending and encircling it within the specified area. Eq. (9) can be 
represented this behaviour mathematically. 

Y2(t+1) = Ybest(t) × LF(D) + YR(t) + (z − h)×rand) (46) 

The solution for the subsequent iteration, denoted as Y2(t + 1), is 
obtained using the second search method, also known as contour flight 
with a short glide attack. This solution exists within a dimensional space 
denoted by D. A key component in this computation is the Levy flight 
distribution function, represented as LF(D), which can be calculated 
using Eq. (47). The method also employs a random solution YR(t), 
selected within the range of [N] during the ith iteration. 

Table 3 
Results of the test functions (F1-F13) based on classical benchmark problems.

Fun No. Measure Comparative optimisation algorithms

HSCAO AO MSCA SCA SMA EO WOA

f1(x) Best 0 5.9145E-301 2.3356E-248 1.2270E-34 0 1.6105E-144 4.3834E-173
Worst 0 7.9371E-200 5.5187E-236 6.6359E-26 0 2.7010E-137 2.6941E-152
Average 0 3.9686E-201 2.7595E-237 4.8680E-27 0 1.3822E-138 1.3471E-153
STD 0 0 0 1.5188E-26 0 6.0328E-138 6.0242E-153

f2(x) Best 0 1.1539E-152 6.6255E-137 6.6060E-23 0 5.8528E-117 1.5350E-79
Worst 0 1.5199E-99 4.3851E-132 2.2576E-18 1.1649E-182 3.0855E-106 5.3533E-76
Average 0 1.0906E-100 2.4369E-133 3.4186E-19 5.8243E-184 1.5747E-107 7.1710E-77
STD 0 3.6326E-100 9.7715E-133 6.2318E-19 0 6.8925E-107 1.4403E-76

f3(x) Best 0 9.6912E-300 3.8680E-157 4.0471E-15 0 1.1853E-78 1.1640E-03
Worst 0 1.4199E-190 5.2990E-135 8.3518E-07 0 2.9019E-68 2.7236E+02
Average 0 7.0995E-192 2.6495E-136 4.8068E-08 0 3.4564E-69 2.4649E+01
STD 0 0 1.1849E-135 1.8710E-07 0 7.9752E-69 6.1582E+01

f4(x) Best 2.6714e-273 5.0737e-80 6.9726E-13 5.0080E+01 3.1872E-271 2.2224E-08 1.1909E+00
Worst 1.2796e-187 3.2349e-52 9.2911 E+01 7.7751E+01 4.1925E-146 3.2840E-06 9.3667E+01
Average 6.5053e-189 1.6174e-53 4.6455 E+00 6.6715E+01 2.0963E-147 5.0470E-07 6.7158E+01
STD 0 7.2335e-53 2.0775E+01 6.9172E+00 9.3749E-147 7.0982E-07 2.5579E+01

f5(x) Best 4.5723E-07 3.9738E-06 5.9106E+00 6.5350E+00 9.5098E-06 4.0683E+00 5.6791E+00
Worst 1.4431E-03 5.5662E-03 8.0561E+00 5.7169E+02 2.1006E-02 4.7033E+00 8.5339E+00
Average 6.4192E-03 5.9230E-04 6.6091E+00 3.5465E+01 4.8222E-03 4.3129E+00 6.2874E+00
STD 2.0380E-03 1.2250E-03 5.4860E-01 1.2621E+02 6.3066E-03 1.8169E-01 6.2250E-01

f6(x) Best 2.0736E-09 2.5533E-07 9.9369E-03 1.6607E-01 3.3763E-06 0 1.4837E-05
Worst 3.4706E-05 1.2922E-04 7.5461E-01 7.9726E-01 3.8534E-05 4.9304E-32 1.3158E-04
Average 2.8458E-06 1.2807E-05 1.8074E-01 4.0811E-01 1.2197E-05 4.0059E-33 5.9341E-05
STD 7.8284E-06 2.8784E-05 2.1228E-01 1.6358E-01 9.5215E-06 1.1315E-32 3.4797E-05

f7(x) Best 8.9027E-06 6.5528E-06 4.3670E-05 5.6417E-05 2.9416E-06 2.8094E-05 7.4159E-05
Worst 2.0313E-04 1.3826E-04 7.8264E-04 9.2785E-03 3.6715E-04 1.0876E-03 3.9658E-03
Average 6.2305E-05 5.0675E-05 2.2082E-04 1.7889E-03 7.0059E-05 2.6544E-04 9.3760E-04
STD 5.4427E-05 3.4201E-05 1.8254E-04 2.0821E-03 8.3717E-05 2.6916E-04 1.0556E-03

f8(x) Best -4.1885E+03 -4.1895E+03 -2.6979E+03 -2.6929E+03 -4.1898Eþ03 -3.8329E+03 -4.1897E+03
Worst -2.1936E+03 -2.3241E+03 -1.4873E+03 -1.9536E+03 -4.1898E+03 -2.6410E+03 -2.8098E+03
Average -2.8955E+03 -3.8775E+03 -2.1363E+03 -2.2631E+03 -4.1898E+03 -3.2654E+03 -3.6872E+03
STD 4.8923E+02 6.4494E+02 2.9835 E+02 2.2357 E+02 3.2277E-04 3.1937 E+02 5.5428E+02

f9(x) Best 0 0 0 0 0 0 0
Worst 0 0 1.7536E+01 1.9643E+01 0 2.9848E+00 0
Average 0 0 1.5207 E+00 9.8216E+01 0 1.4924E+01 0
STD 0 0 4.7414 E+00 4.3923 E+00 0 6.6743 E+00 0

f10(x) Best 8.8817E-16 8.8817E-16 4.4408E-15 8.8817E-16 8.8817E-16 4.4408E-15 8.8817E-16
Worst 8.8817E-16 8.8817E-16 4.4408E-15 1.6431E-13 8.8817E-16 4.4408E-15 7.9936E-15
Average 8.8817E-16 8.8817E-16 4.4408E-15 2.6467E-14 8.8817E-16 4.4408E-15 3.5527E-15
STD 0 0 0 4.2983E-14 0 0 2.2689E-15

f11(x) Best 0 0 0 0 0 0 0
Worst 0 0 2.7502E-01 6.4433E-01 0 7.3960E-02 5.1852E-01
Average 0 0 4.3885E-02 9.928E-02 0 3.6980E-04 1.0211 E-01
STD 0 0 6.9274E-02 2.1211E-02 0 1.6538E-03 1.6596 E-01

f12(x) Best 1.5453E-10 1.5792E-08 3.0484E-01 3.101E+00 2.9682E-05 2.1707E-05 1.3380E-02
Worst 9.7415E-06 1.4132E-05 6.2344E-01 3.6874E+07 2.7446E-02 4.0713E-03 1.6532E-01
Average 1.5175E-06 1.3506E-06 3.9866E-01 6.1011E+06 7.3348E-03 4.7975E-04 4.1710E-02
STD 2.2800E-06 3.1726E-06 8.4381E-02 9.8604E+06 8.0396E-03 1.1759E-03 4.1869E-02

f13(x) Best 1.0048e-08 1.9525E-07 3.2990E+00 5.4730E+05 2.3113E-04 1.0236E-01 3.8002E-01
Worst 1.4107E-04 3.7256E-04 4.2090E+00 6.5514E+07 1.4377E-01 1.1164E+00 2.1803E+00
Average 1.0344e-05 4.0321E-05 3.7807E+00 2.1261E+07 2.5438E-02 5.6873E-01 1.2201E+00
STD 3.0998e-05 9.0754E-05 2.0368E-01 1.6957E+07 3.3696E-02 3.0347E-01 5.6001E-01

(W|L|T) 
Mean 
Ranking

(5|2|6) (0|9|4) (0|11|2) (0|10|3) (1|7|5) (1|10|2) (0|10|3)
2.1923 2.8461 5.0384 6.0769 2.5769 4.3465 4.9230
1 3 6 7 2 4 5
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LF(D) = 0.01 ×
u × σ

|v|
1
β

(47) 

σ =

Γ(1 + β) × sinc
(

πβ
2

)

Γ
(

1+β
2

)

× β × 2
β− 1

2

(48) 

The values u and υ are generated at random from 0 to 1. Where β is a 
fixed value that is established at 1.5. The spiral shape in the search is 
represented by z and h in Eq. (49), these values are computed as follows: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

z = k × sin(ϕ)

h = k × cos(ϕ)

k = r5 + 0.00565 × D1

ϕ = − 0.05 × D1 +
3 × π

2

(49) 

where r5 is ranging the search cycles from 1 to 20, while, D1is an integer 
numbers between 1 and dimension size.

• Expanded exploitation (Y3)
In this step, the Aquila addresses the position of its prey, then, it 

descends vertically for an initial attack, reducing its speed if the prey is 
spotted which is known as the low-altitude and descent attack. This 
method involves the Aquila precisely designating the prey area, pre
paring for landing, and initiating an attack. The Aquila uses the selected 
area as its method vector for getting close to and attacking the prey. This 
behaviour, which involves observing the prey’s response to the initial 
attack, is mathematically represented as in Eq. (50). 

Y3(t+1) = (Ybest(t) − YM(t)) × α − rand + ((Ub − Lb)× rand+Lb) × δ
(50) 

• Narrowed exploitation (Y4)
In the pursuit and capture strategy, Aquila in this approach follows 

the prey, taking into account its potential escape direction, and subse
quently launches an assault on the terrestrial target. This behaviour can 
be presented to mathematical expression as follows. 

Y4(t+1) = QF × Ybest(t) − (G1 ×Y(t)× rand) − G2 × LF(D) + rand

× G1

(51) 

QF(t) = t
G1

(1− T)2 (52) 

⎧
⎨

⎩

G1 = 2 × rand − 1

G2 = 2 ×
(

1 −
t
T

) (53) 

The function QF(t) is used to harmonize the search approach. In 
other side, the parameter of G1 tracks the prey’s movements of Aquila 
that is taking a random value from the inclusive range [-1, 1]. While, G2 

represents the decline in flight incline as Aquila pursues its prey, with a 
linear reduction.

4.4. Hybrid AO and MSCA algorithms

The Aquila Optimizer (AO) [20] is a swarm intelligence algorithm 
that replicates four foraging strategies which is inspired by the predation 
behavior of Aquila. It has a rapid convergence, high search efficiency, 
and robust global exploration capability [21]. However, it has been 
observed that the AO has insufficient local exploitation capability and is 
prone to falling into local optima, leading to premature convergence 
[22]. The experimental findings for the Modified Sine Cosine Algorithm 
(MSCA) indicate weaknesses in population diversification and slow 
convergence speed during the exploration phase, also faces challenges in 
handling complex problems with high dimensional features. Despite the 
modifications, it still struggles with certain optimization problems. To 
address these shortcomings, a new hybrid algorithm, the Hybrid Aquila 
Optimizer-based Sine Cosine Algorithm (HSCAO), is proposed. This al
gorithm combines the strengths of the AO and MSCA, aiming to leverage 
the advantages of both algorithms while mitigating their inherent 
disadvantages.

The HSCAO algorithm is designed to offer a better solution for 
addressing the challenges faced by traditional optimization algorithms 
in the domains which requires high convergence speed with better 
performance. The HSCAO algorithm operates by running the AO and 

Table 4 
Results using classical test functions (F1-F13) (D= 30) compared with the relative optimal algorithms.

Fun No. Measure Comparative optimisation algorithms

HSCAO MHA NMRA MPA WOA GWO MFO

f1(x) Average 0 0 1.12E-86 5.05E-23 1.11E-83 3.14E-33 1.17E+03
STD 0 0 7.88E-86 4.93E-23 7.37E-83 5.32E-32 3.25E+03

f2(x) Average 7.63E-205 1.63E-180 3.46E-45 3.08E-13 1.88E-54 7.11E-20 3.11E+01
STD 0 0 1.52E-44 2.98E-13 5.69E-54 6.53E-20 2.00E+01

f3(x) Average 0 1.16E-318 2.54E-85 6.71E-05 2.97E+04 3.85E-08 1.89E+04
STD 0 0 1.32E-84 1.37E-04 9.33E+03 6.91E-08 1.23E+04

f4(x) Average 3.85E-201 1.00E-185 3.50E-45 3.15E-09 3.72E+01 2.18E-08 6.03E+01
STD 0 0 1.52E-44 1.75E-09 2.87E+01 1.74E-08 9.31E+00

f5(x) Average 2.01E-03 2.84E+01 2.89E+01 2.45E+01 2.74E+01 2.67E+01 1.32E+04
STD 3.55E-03 3.23E-01 2.54E-02 4.37E-01 4.79E-01 6.86E-01 3.11E+04

f6(x) Average 9.33E-06 3.86E-01 6.56E+00 1.43E-08 8.45E-02 4.70E-01 5.92E+02
STD 1.36E-05 1.28E-01 5.90E-01 6.25E-09 1.20E-01 2.77E-01 2.38E+03

f7(x) Average 1.59E-04 9.65E-05 6.94E-04 1.00E-03 2.30E-03 1.20E-03 3.02E+00
STD 1.30E-04 1.19E-04 6.10E-04 4.32E-04 2.70E-03 5.08E-04 7.37E+00

f9(x) Average 0 0 0 0 1.11E-15 1.64E+00 1.52E+02
STD 0 0 0 0 7.95E-15 3.06E+00 3.04E+01

f10(x) Average 8.88E-16 8.88E-16 8.88E-16 1.44E-12 4.44E-15 4.26E-14 1.16E+01
STD 0 0 0 8.94E-13 2.24E-15 3.32E-15 8.60E+00

f11(x) Average 0 0 0 0 4.28E-02 8.60E-03 5.70E-03
STD 0 0 0 0 6.70E-02 3.46E-02 2.85E-02

f12(x) Average 6.40E-07 1.65E-02 1.09E+00 1.39E-09 7.40E-03 2.59E-02 5.32E+00
STD 1.05E-06 8.20E-03 2.56E-01 6.50E-10 6.30E-03 1.31E-02 6.64E+00

f13(x) Average 1.22E-05 2.69E-01 2.97E+00 6.53E-04 2.25E-01 3.34E-01 8.02E+00
STD 2.43E-05 8.12E-02 1.38E-01 2.60E-03 1.60E-01 2.02E-01 7.71E+00
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MSCA in parallel, with each algorithm operating on its own population 
of solutions. To avoid the insufficient exploitation phase of the AO 
method, the fact that the exploration phase is implemented at the first 
step of the proposed algorithm around 2/3 of the iteration. Hence, the 
effective intensification phase of MSCA is implemented in place of the 
AO’s restricted exploration phase. Consequently, the objective is to 
accelerate the process of achieving the optimal solution by enhancing 
the exploitation stage of the hybrid HSCAO. After each iteration, the 
algorithm compares the best solution found by each method and updates 
a global best solution variable accordingly. This approach ensures that 
the advantages of both algorithms are utilized and the best solution is 
selected based on the fitness function value. The flowchart of the pro
posed algorithm is shown its major steps, as presented in Fig. 4. In the 
first stage, the initial parameters of the HSCAO algorithm are set. Then, 
the optimal location of boundaries is calculated based on fitness func
tions. In the AO method, the exploitation phase is insufficient to despite 
the fact of the exploration phase at 2/3 of the iteration. In order to 
prioritize the exploitation capability, the effective intensification phase 
of MSCA is implemented in place of the AO’s restricted exploration 
phase. Consequently, the objective is accelerated the process of the 
optimal solution by enhancing the exploitation stage of the hybrid 
HSCAO. This algorithm will be used to enhance the performance of the 
PID-AGC system based on addressing the optimal parameters of the PID 

control.

5. Proposed HSCAO algorithm based on AGC

The findings and analysis related to the suggested HSCAO are pre
sented in this section, and its comparisons with respect to other algo
rithms based on AGC. Four subsections make up this section. 
Comprehensive details regarding the benchmark functions and 
comparative algorithms used to assess the suggested algorithm’s per
formance are given in the first subsection. To give the sensitivity analysis 
of the suggested approach, comprehensive results on traditional 
benchmark problems are shown in the second subsection, resulting in, 
the improved parameter fits of the HSCAO algorithm. To demonstrate 
the impact of the suggested algorithm comparison with the relative 
optimal algorithms, the third subsection examines CEC 2019 benchmark 
challenges which is considered more challenge. In the fourth subsection, 
the optimization issue instances in the PID-AGC system’s tuning pa
rameters are finally presented based on a fitness function.

5.1. Parameter settings and the test suite

This section provides extensive details about the classical benchmark 
suite used for the analysis of proposed algorithm. The benchmark suite 

Fig. 5. Convergence patterns of various algorithms in comparison based on classical issues.
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consists of thirteen classical problems that its problems are unimodal 
and multimodal problems, with variable dimension sizes. The unimodal 
problems that have only one global minimum whereas for multimodal 
problems are multiplied local minima’s and one global minimum. 
Unimodal problems help in understanding the exploitative capabilities 
of an algorithm whereas multi-modal problems are highly challenging 
problems and help to check both explorative and exploitative tendencies 
of an algorithm. Thus, the benchmarks will test the effectiveness of the 
proposed algorithm in terms of explorative and exploitative tendencies. 
The details of the benchmark functions used is given in Table 1.

In Table 2, the parametric details of the algorithms used for com
parison are added. The major algorithm includes SCA [16], WOA [23], 
SMA [24], EO [25], AO [20], AOA [26], MHA [27], NMRA [28], MFO 
[29], GWO [30], and MPA [30]. Also, the basic parameters and their 
corresponding values are presented. Apart from that, the population size 
50 and stopping criteria is kept same for all the algorithms. The stopping 
criteria is the total number of iterations, and in the present case they are 
equal to1000. For all the algorithms used for comparison, it is kept in 
mind that the overall number of function evaluations remain same.

5.2. Comparison on classical benchmark problems

The results, which are displayed in Table 3, are meant to assess the 
performance of the HSCAO algorithm by means of traditional 

benchmarks. The best, worst, mean, and standard deviation (STD) de
viation values of 30 runs are displayed in this table. Other than that, a 
fixed dimension size of 10 is used to present the findings. Two statistical 
tests namely Wilcoxon’s p-rank and Friedmann tests [32] are done to 
prove the significance of the proposed algorithm at 5 % level of signif
icance. The results for Wilcoxon’s p-rank test are given in terms of win, 
loss and tie (w/l/t), where w denotes that the suggested algorithm’s 
outcomes are superior to those of the comparator algorithm, whereas l 
means that the results of the proposed algorithm are worse as compared 
to the test algorithm and finally t stands for P-tie which indicates that 
either the outcomes of the two algorithms are statistically similar or 
there is no correlation between them. The Friedmann test results are 
presented in the form of a rank commonly referred as f-rank, and the 
algorithm scoring the best rank is considered as the overall best.

In Tables 3 and Table 4, the comparative results of HSCAO with 
respect to MSCA, MHA [27], NMRA [28], AO [20], SCA [16], EO [25], 
MPA [31], WOA [23], GWO [30], and MFO [29] for 10 and 30 dimen
sional problems respectively. The best, worst, mean, and standard de
viation (STD) values of 30 runs are used to display the results. For 
functions f1 to f4, and f5, f9 to f12, the proposed HSCAO provides the 
better statistical results whereas for f6 EO provide the best results and 
for functions f7 and f8 SMA gives the best results. The statistical results 
in terms of w/l/t and p-test in the last lines of Table 4, shows that of all 
the algorithms under comparison, the proposed HSCAO scores the first 

Fig. 5. (continued).
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rank. Apart from that the convergence patterns shown in the Fig. 5, 
shows that the proposed HSCAO converges significantly faster for most 
of the test problems with respect to other algorithms. In addition, it was 
the most competitive processing time when it is compared with the other 
relative optimization algorithms. Hence, it was the most robust and 
efficient to rest at solving issues by the population size. Consequently, it 
is carried to implement in the real application test of power system 
network that requires the higher processing time to address the high 
fluctuations in frequency response.

5.3. CEC 2019 benchmark results

In this subsection, extensive results on CEC-2019 benchmarks are 
presented in Table 5. The CEC 2019 benchmark suite is a 100-digit 
problem test suite and consists of 10 highly challenging problems 
[33]. The same set of algorithms namely MSCA, AO [20], SCA [16], AOA 
[26], EO [25], and WOA [23], are used for a comparative study with 
respect to HSCAO. The results are presented as the best, worst, mean and 
STD values of 30 runs. The results in Table 5 shows the HSCAO was 
achieving the best performs for the function g1, g3, g4, g7 to g10, in 
contract, the EO gives the best results at function g2 and g5. Overall, the 
proposed HSCAO was the best for eight benchmark problems across the 
iterations number, while EO algorithm was the good performance at two 
problems only. Meanwhile, other comparative algorithms delis to 

address the local solutions. This can be further acknowledged from the 
convergence curves in Fig. 6 when it is addressing the processing time of 
the issues compared with the relative optimization algorithms. From the 
convergence curves, we can see that the HSCAO algorithm has the best 
convergence patterns with respect to other algorithm for most of the test 
functions. As results, this further proves that the HSCAO performs 
significantly better for these problems and can be considered as a po
tential candidate for future optimization research. Hence, the proposed 
algorithm is implemented within the PID-AGC system to addressing the 
sensitivity of power system network by addressing the uncertain pa
rameters of the controller due to its fastest processing time when it is 
compared with other relative optimization algorithm tests.

5.4. Optimisation problem

Following the validation of the HSCAO algorithm using the classical 
and CEC-2019 benchmark issues, which demonstrate the wide-ranging 
performance of the suggested algorithm in comparison to the relative 
optimization algorithms, Fig. 7 illustrates the use of the suggested PID 
control in conjunction with an AGC for a two-area power system. On the 
basis of the validation tests, Table 6 presents the main parameters of the 
HSCAO algorithm. Table 7’s parameters are then used to apply this 
hybrid HSCAO algorithm to the two-area power grid. The historical 
changing error of the frequency response and power generation of the 

Table 5 
Results of the HSCAO algorithm in compression to other methods for CEC2019 test functions.

Fun No. Measure Comparative optimisation algorithms

HSCAO AO MSCA SCA AOA EO WOA

g1(x) Best 3.9418E + 04 4.4699E + 04 4.1896E + 04 1.4089E + 08 1.3598E + 06 9.8254E + 04 5.8768E + 10
Worst 4.9605E + 04 9.0952E + 04 9.5831E + 08 3.9500E + 10 3.6414E + 10 5.9835E + 10 1.1350E + 12
Average 4.2582E + 04 5.4336E + 04 7.5196E + 07 1.1139E + 10 3.4939E + 09 9.0304E + 09 5.6831E + 11
STD 2.8676E + 03 1.0146E + 04 2.1453E + 08 1.2303E + 10 9.3076E + 09 1.4674E + 10 2.9535E + 11

g2(x) Best 1.7352E + 01 1.7358E + 01 1.7357E + 01 1.7375E + 01 1.8060E + 01 1.7343E + 01 4.7742E + 02
Worst 1.7390E + 01 1.7403E + 01 1.7683E + 01 1.7660E + 01 1.9848E + 01 1.7348E + 01 6.6269E + 03
Average 1.7369E + 01 1.7377E + 01 1.7391E + 01 1.7467E + 01 1.9217E + 01 1.7345E + 01 2.2372E + 03
STD 1.0460E-02 1.2255E-02 6.9479E-02 6.2465E-02 5.0702E-01 1.0232E-03 1.8576E + 03

g3(x) Best 1.2702E + 01 1.2702E + 01 1.2702E + 01 1.2702E + 01 1.2702E + 01 1.2702E + 01 1.2702E + 01
Worst 1.2702E + 01 1.2702E + 01 1.2704E + 01 1.2703E + 01 1.2706E + 01 1.2702E + 01 1.2703E + 01
Average 1.2702E + 01 1.2702E + 01 1.2703E + 01 1.2703E + 01 1.2703E + 01 1.2702E + 01 1.2702E + 01
STD 7.3412E-06 7.3800E-06 5.3107E-04 9.3470E-05 1.1690E-03 2.2128E-06 3.4768E-05

g4(x) Best 6.5034E + 01 1.2634E + 02 2.1982E + 02 6.7852E + 02 6.5138E + 03 9.2181E + 01 2.0577E + 03
Worst 1.1627E + 03 2.3034E + 03 5.7327E + 03 2.6784E + 03 2.8555E + 04 9.5095E + 02 9.7162E + 03
Average 1.9799E + 02 8.0077E + 02 1.4759E + 03 1.4844E + 03 1.2325E + 04 4.0440E + 02 5.7255E + 03
STD 2.3892E + 02 5.4691E + 02 1.8066E + 03 4.9776E + 02 6.1909E + 03 2.2608E + 02 2.2116E + 03

g5(x) Best 1.2456E + 00 1.2655E + 00 1.8299E + 00 2.0374E + 00 2.5903E + 00 1.1394E + 00 2.4002E + 00
Worst 2.0923E + 00 2.2326E + 00 2.4951E + 00 2.3905E + 00 6.0463E + 00 1.7435E + 00 5.1572E + 00
Average 1.4734E + 00 1.5829E + 00 2.0416E + 00 2.2233E + 00 4.3610E + 00 1.4295E + 00 3.7438E + 00
STD 2.2704E-01 3.0723E-01 1.6139E-01 9.6322E-02 9.6549E-01 1.6938E-01 8.1991E-01

g6(x) Best 7.9459E + 00 7.9458E + 00 9.6049E + 00 9.8069E + 00 7.3835E + 00 9.4559E + 00 8.1841E + 00
Worst 1.1395E + 01 1.2224E + 01 1.2094E + 01 1.2131E + 01 1.0803E + 01 1.1355E + 01 1.1952E + 01
Average 1.0172E + 01 1.0755E + 01 1.0950E + 01 1.1110E + 01 8.9877E + 00 1.0136E + 01 1.0727E + 01
STD 1.0834E + 00 1.0833E + 00 6.5944E-01 6.5974E-01 8.9491E-01 4.2046E-01 9.4789E-01

g7(x) Best 1.2284E + 01 8.3454E + 01 3.0144E + 02 4.6046E + 02 3.4101E + 01 1.5945E + 02 6.6138E + 02
Worst 6.0572E + 02 8.3168E + 02 1.1036E + 03 1.0633E + 03 4.7227E + 02 2.3322E + 02 1.2669E + 03
Average 2.7575E + 02 3.4378E + 02 7.4648E + 02 8.4291E + 02 2.0528E + 02 1.4805E + 02 9.4509E + 02
STD 1.5409E + 02 1.8583E + 02 2.1700E + 02 1.6182E + 02 1.2826E + 02 4.5965E + 02 1.7310E + 02

g8(x) Best 3.5660E + 00 4.1942E + 00 4.3850E + 00 5.1300E + 00 4.6287E + 00 6.0068E + 00 5.3996E + 00
Worst 6.5051E + 00 6.0753E + 00 6.8868E + 00 6.8422E + 00 6.1982E + 00 6.9246E + 00 7.3206E + 00
Average 5.1921E + 00 5.2745E + 00 5.9553E + 00 6.1248E + 00 5.5875E + 00 6.3167E + 00 6.4517E + 00
STD 7.9635E-01 5.7805E-01 6.0817E-01 5.0553E-01 4.8782E-01 2.5292E-01 4.8119E-01

g9(x) Best 2.7606E + 00 2.9956E + 00 4.6422E + 00 2.2902E + 01 2.7924E + 02 2.7933E + 00 4.8685E + 02
Worst 6.1373E + 00 6.4775E + 00 2.9170E + 02 2.6481E + 02 1.6400E + 03 5.6484E + 00 1.2954E + 03
Average 4.4169E + 00 5.0082E + 00 3.5617E + 01 1.0021E + 02 7.5734E + 02 4.0023E + 00 8.4974E + 02
STD 1.0163E + 00 1.0171E + 00 8.5592E + 01 5.9906E + 01 3.8309E + 02 9.3267E-01 2.4361E + 02

g10(x) Best 2.9159E + 00 3.3682E + 00 2.0368E + 01 2.0329E + 01 2.0003E + 01 2.0418E + 01 2.0143E + 01
Worst 2.0619E + 01 2.0562E + 01 2.0647E + 01 2.0558E + 01 2.0410E + 01 2.0663E + 01 2.0621E + 01
Average 1.8012E + 01 1.9173E + 01 2.0513E + 01 2.0464E + 01 2.0204E + 01 2.0555E + 01 2.0397E + 01
STD 5.8520E + 00 4.0794E + 00 7.5293E-02 6.7826E-02 1.2243E-01 7.4320E-02 1.2563E-01

(W|L|T) 
Mean 
Ranking

(6|3|1) (0|9|1) (0|9|1) (0|9|1) (1|8|1) (2|7|1) (0|9|1)
1.7 2.9 4.1 5.3 4.5 3.7 5.8
1 2 4 6 5 3 7
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application test are employed as the input signal of the robust PID-AGC, 
whilst, the signal of the governor is addressed as the output, as discussed 
in Eq. (36) and Eq. (37). Hence, The HSCAO algorithm addresses the 
accurate parameters of the robust PID-AGC with the minimum ITAE 
performance index as expressed in following Eq. (54) [34]: 

ITAE =

∫t

0

(/ΔFi

/

+

/

ΔPtie

/

.t dt (54) 

This objective function based on ITAE index is used to minimize the 
overshoot and oscillations of the frequency response and the power 
delivery of the power system based on the optimal control theory. 
Consequently, the optimal parameters of the PID control are addressing 
to design the robust AGC system for the multi-area power system 
network, as presented in Table 8. This is because the optimal state 
feedback control based on hybrid algorithm such as HSCAO algorithm 
gives the better behavior systematic tuning trade-offs between the 
tracking signal of the power disturbances and the control activity of 
frequency response. As a result, it will address the challenges of the 
computational complexity and feasibility of power system networks [35,
36]. In the next step, this robust PID-AGC system based on the HSCAO 
algorithm is addressed the parameters of PID control and AGC system 

under various scenarios when it is applied on the two-area power system 
network to show the stability and scalability of its performance. This 
proposed algorithm has a faster processing time to find the parameters 
as explained in section 4 and proved in section 5.

6. Results and discussion

A MATLAB Simulink model environment for a two-area power 
network is designed to test the robust PID-AGC system. Next, it is 
distinguished with the FLC-AGC, and PID-AGC to demonstrate its effi
cacy and scalability. Then, the ITAE performance index is employed to 
determine the transient response time of the system under three 
disturbance cases. After that, the three simulation scenario cases are 
considered as following: simple step changing load-disturbance, vari
able step changing load-disturbance and unbalance step changing load- 
disturbance. Those disturbance tests are represented various cases that 
occurs in a competitive load-demand to test the high sensitivity of AGC. 
Finally, they are employed for the two-area power network to analysis 
the sensitivity of the robust PID-AGC control for each area.

In the first case, the simple step-load disturbances are simulated 
based on the rapid changing from 0 % to 60 % at 50 seconds and un
changing for area-1 and area-2, respectively. Although, both of the 

Fig. 6. Convergence curves for different algorithm based on CEC-2019 benchmarks.
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Fig. 6. (continued).

Fig. 7. The block diagram of PID-AGC based on the HSCAO algorithm.

Table 6 
The fitting parameters of HSCAO algorithm.

Parameters Value

Alpha 0.1
Delta 0.1
Omega 0.005
Beta 1.5
Dimension of search space 100
Population size 50
Standard deviation 30
Linear reduction 2
Search cycles ranging 1-20

Table 7 
The designed parameters of power system based on area.

Parameters Area 1 Area 2

The power generation unit (MW) 250 400
The frequency level (Hz) 50 50
The speed governor (pu) 0.05 0.0625
The time governor (sec.) 0.2 sec 0.3 sec
The time turbine (sec.) 0.5 sec 0.6 sec
The inertia generator (sec.) 5 4
The sensitivity of load-coefficient 0.6 0.9

S.D. Al-Majidi et al.                                                                                                                                                                                                                            Results in Engineering 25 (2025) 103951 

14 



robust controller and classical controllers were an independent fre
quency response for this simple load fluctuations, as presented in Fig. 8
(a) and (b). However, the AGC system of the optimised PID controller 
was the most reliable to response the deviation loads of costumer tests 
when compared to the FLC-AGC and PID-AGC that have been fluctuating 
around the reference test signal with higher overshoots. Furthermore, 
the power deliveries of the generation units were the highest stability 
with the lowest steady state error comparison to the same approaches as 
well as it was the lest overshoot, as shown in Fig. 8(b) and (c). In 
contrast, the conventional FLC-AGC and PID-AGC are taking a bite 
longer time to address the reference value of the frequency response 
with the higher maximum rise time for various changing steps compared 
to the proposed method. As results, it is achieved the lowest ITAE index 
about 0.6s whiles the conventional FLC-AGC and PID-AGC were about 
2.7s and 3.9s.

In the second case, the complex step-load disturbances are employed 
on the area-1 changing as following; 40 %, 80 %, 40 % and 20 % at 10 
seconds,0 second, 30 seconds and 40 seconds respectively. While, the 
step- load disturbance of the area-2 is changing from 0 %, 40 %, 10 %, 40 
% and 20 % at 10 second, 30 seconds and 40 seconds. The outcome of 
this test shows that the robust PID controller is also achieved the highest 
stability for frequency response with the lowest fluctuation around the 
standard frequency response of the power grid when it is applied on 
those variable load disturbances regarding to the comparison controller 

cases, as presented in Fig. 9(a) and (b). Further, the power generation of 
both areas are confirmed the enhancement in the performance accord
ing to its minimizing convergence time with the lowest oscillation 
compared with the other approach controllers, as explained in Fig. 9(c) 
and (d). In other side, the conventional PID-AGC and conventional FLC- 
AGC were a lesser dynamic performance to address the overshoot and 
the oscillation at various time tests. Moreover, they tack a bite longer 
time to much the power demand with power generation. Hence, the 
robust PID-AGC is approved the best validation test when it reaches to 
the stability state at ITAE index of 3.9s while the conventional FLC-AGC 
and PID-AGC are 8.7s and 14.5s respectively.

Lastly, the third scenario is designed based on an unbalance load- 
disturbance to assess the validation of the proposed PID approach 
under a fault-case. This unbalance condition-test is rapidly changing for 
simulation signal that is value of 0.25pu-amplitude and 50 Hz-frequency 
scale for a sinusoidal wave. As noticed in Fig. 10, the three-controller 
systems face a huge fluctuation challenge around the standard fre
quency level at various simulation time. However, the proposed 
controller was the least steady-state error of oscillation response for the 
frequency level and power delivery of the grid-connected regrading to 
the FLC-AGC and PID-AGC. In addition, it was the most damping ratio to 
address the zero-point state with the lowest overshoot and rising time 
during all the time test comparison with the other classical approaches. 
Further, it was the lowest oscillation for the frequency response and 
power delivery at the various states. Hence, it achieves the acceptable 
fluctuating frequency response regarding to the standard value which is 
less than ± 0.5 % during the test time. Consequently, it is achieved the 
best ITAE performance index about 5.2s compared to the FLC-AGC and 
PID-AGC of 10.9s and 17.4s respectively. This is because the optimal 
PID-AGC based on the HSCAO algorithm gives the highest robust trade- 
offs between disturbances and the wide variation of PID-AGC parame
ters. In other side, the conventional PID-AGC was the faster to address 
the steady state error compared with the FLC-AGC system. Finally, the 
summarizing results of ITAE index of these three scenarios are depicted 
in Table 9. Whilst, the sensitivity of AGC system using the five seconds of 
interval Simulink time at the fault condition is presented in Table 10, 

Table 8 
The tuning parameters of Optimal PID-AGC vs Conventional PID-AGC.

The area of power system Conventional PID-AGC Robust PID-AGC

Area-1 B1= 20 B1=20
Kp= 0.7 Kp= 58.55
Ki= 2 Ki= 98.45
Kd= 1 Kd= 39.57

Area-2 B= 16.92 B=16.92
Kp= 0.7 Kp= 78.54
Ki= 2 Ki= 99.72
Kd= 1 Kd= 59.78

Fig. 8. The outcome of case-1 for (a)frequency of area-1, (b)frequency of area-2, (c)power of area-1and (c)power of area-2.
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which shows the robustness of proposed PID method based on the 
HSCAO algorithm when compared with the conventional FLC controller 
and the conventional PID controller which shows that the proposed al
gorithm addresses the parameters of PID-AGC adequately, resulting in, 
achieving the lower ITAE index in various time intervals.

7. Conclusions

The robust PID controller for the higher performance AGC in a two- 
area power system network has been designed in this study using the 

Fig. 9. The results of case-2 for (a)frequency of area-1, (b)frequency of area-2, (c)power of area-1and (c)power of area-2.

Fig. 10. (a) Oscillation response in frequency and (b) Output-Power delivery, at an unbalance power disturbance (case-3).

Table 9 
The total ITAE value for Proposed method, FLC method and PID method.

Method ITAE performance index

Case-1 Case-2 Case-3

Robust PID-AGC 0.6 3.9 5.2
Conventional FLC-AGC 2.7 8.7 10.9
Conventional PID-AGC 3.9 14.5 17.4

S.D. Al-Majidi et al.                                                                                                                                                                                                                            Results in Engineering 25 (2025) 103951 

16 



HSCAO algorithm. Firstly, the HSCAO optimisation tools have been 
implemented to address the main elements of the PID-AGC controller. 
Next, it is assessed on CEC-2019 and classical benchmark issues with 
different dimensions to set the better parameter fits of the proposed 
algorithm. Also, statistical analysis techniques based on Wilcoxon’s test 
and Friedman’ test have been applied to prove the outstanding inter
pretation of this HSCAO algorithm compared with other optimsation 
algorithms. Then, ITAE index is used as fitness function to determine the 
transiting time of the frequency response. Finally, it is employed on the 
real time application of the power system network, after addressing the 
main parameters of PID-AGC system that is built based on MATLAB 
environment regarding to the state space model. The finding results 
demonstrate that the proposed method iterates the value of frequency 
operation to standard value of power system in less time and improves 
the power delivery of the multi-area test compared with the conven
tional FLC and PID methods with addressing the fault condition test 
under several states. Consequently, it achieves the lowest ITAE indexes 
about 0.6s, 3.9s and 5.2s for the simple disturbance, and complex 
disturbance and fault disturbance, respectively. Whilst, the FLC-AGC 
and PID-AGC controllers accomplishes to 2.7s, 8.7s and10.9s and 3.9s, 
14.5s and 17.4s respectively. In future work, it will be used to dampen 
the oscillation level in frequency response of a hybrid power system 
network under double fault tests.
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15 0.0005 − 0.0008 0.0007 − 0.0001 − 0.0053 − 0.0012 − 0.001 − 0.0026 − 0.0133 0.5834 2.1383 4.2128
20 0.0006 0.0013 0.0004 − 0.0001 − 0.0005 − 0.0003 − 0.0004 − 0.0063 − 0.0041 0.5891 3.758 4.3523
25 0.0001 0.0002 0.0002 − 0.0001 0.0003 − 0.0001 − 0.0002 − 0.0021 − 0.0015 0.599 4.6042 4.3593
30 0.0002 − 0.0001 0.0002 − 0.0001 − 0.0001 − 0.0001 − 0.0001 − 0.0004 − 0.0004 0.5918 5.013 4.3651
35 0.0091 0.0408 − 0.1006 0.0801 0.1049 0.2014 0.0112 0.2056 0.6153 3.0953 6.8698 14.5378
40 0.0051 − 0.0016 − 0.0003 0.0001 0.0066 0.0083 0.0056 0.0069 0.0049 3.1084 9.7653 14.8569
45 0.0042 − 0.0085 0.0084 − 0.0071 − 0.0036 − 0.0098 − 0.0017 − 0.0036 − 0.0188 3.4643 12.617 20.9939
50 0.0001 0.0009 0.0002 − 0.0001 − 0.0003 − 0.0002 − 0.0003 − 0.0042 − 0.0028 3.4757 15.7262 21.2676
55 0.0001 0.0001 0.0002 − 0.0001 0.0002 − 0.0001 − 0.0001 − 0.0014 − 0.0011 3.4775 16.1139 20.2815
60 0.0001 0.0001 0.0002 − 0.0001 − 0.0001 − 0.0001 − 0.0001 − 0.0036 − 0.0004 3.4804 15.7455 20.2993
65 0.0001 0.0001 − 0.0001 − 0.0001 0.0001 − 0.0001 − 0.0001 − 0.0001 − 0.0008 3.4829 18.189 20.3166
70 0.0001 0.0002 − 0.0003 0.0001 0.0001 − 0.0001 0.0001 0.0011 0.0001 3.4837 18.6858 20.3604
75 0.0051 0.0012 0.0012 − 0.0011 − 0.0021 0.0091 − 0.0011 − 0.0082 0.0018 4.4844 19.1997 20.4334
80 0.0041 0.0001 0.0004 − 0.0081 − 0.0011 0.0041 − 0.0091 − 0.0082 0.0003 4.4855 19.7782 20.4956
85 0.0021 − 0.0001 0.0002 − 0.0001 0.0001 − 0.0001 − 0.0001 0.00013 − 0.0007 4.4863 20.3594 20.573
90 0.0051 0.0082 − 0.0102 0.0061 0.0091 − 0.0401 0.0091 0.02028 − 0.0904 5.4873 21.0226 21.6491
95 0.0001 0.0002 − 0.0003 0.0001 − 0.0001 0.0001 0.0001 0.0001 0.0005 5.4883 21.6785 22.7289
100 0 0 0 0 0 0 0 0 0 0 0 0
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