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ARTICLE INFO ABSTRACT
Keywords: The fluctuating frequency in a power grid is the major stability challenge duo to the unpredictable power de-
Automatic generation controller mand of costumers during the time. To address this issue, automatic generation controller (AGC) is employed.

Proportional-integral-derivative

Aquila optimizer

Sine cosine algorithm and power system
network

The AGC based on a proportional integral derivative (PID) approach is popularly utilised owing to its soft
implementation and lower expenditure. However, it ripples to handle the standard frequency of a multi-area
power grid that occurs in a competitive load-demand case, because of the high sensitivity of its uncertain pa-
rameters. In this paper, a Hybrid Aquila Optimizer-Sine Cosine algorithm (HSCAO) is designed for addressing the
sensitivity of the PID-AGC parameters specifically for the multi-area power system network. The suggested al-
gorithm is assessed based on CEC-2019, and classical benchmark issues with various dimensions to validate its
performance and address the better fits of the algorithm parameters adequately. Also, a statistical analysis
technique is conducted using Wilcoxon’s test and Friedman test to demonstrate the supervise performance of the
HSCAO optimisation regarding to other relative optimal algorithms. A two-area power system network is
simulated using MATLAB environment to implement the proposed AGC system. The outcomes prove that the
optimal PID-AGC method based on HSCAO technique demonstrates its ability to address the simple and complex
fluctuations of load demands quickly. Also, it is the most robust to supervise the frequency response under fault
condition test, resulting in, achieving the lowest ITAE index of 5.2s compared to the conventional fuzzy logic
control-AGC and the conventional PID-AGC of 10.9s and 17.4s respectively.
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Dim Dimension size
N Population size
LF(D) Levy flight distribution function

uand v Values are generated at random from O to 1

A Fixed value of HSCAO algorithm that is established at 2.

B Fixed value of HSCAO algorithm that is established at 1.5.
Is Number of search cycles ranging from 1 to 20

yand 8 Parameters for exploitation adjustment are set at 0.1

Lb & Ub Lower limit & upper bound.

QF(t) Quality measure of the search approach
G1 & Gz Aquila’s mobility factors

APyie Tie Line power deviation

u; & ug  Control inputs in Areas 1& 2.

APg1 & APy The output power deviations at governor
APy & APy The output deviations at Turbine
AP1=D; The load disturbances in Areas 1

AP>=D, The load disturbances in Areas 2.

K1&Ks  The constants of Areas 1&2.

Tp1&tp2  The time constants of Areas 1& 2.

ACE The processing error of power system

B; & By The Tie-Line frequency bias at Areas 1&2.

1. Introduction

Regrading to the multi-generation units and the electrical fluctuating
demands on the modern power grid, the frequency response of a power
system network is changing dramatically. This is causing the instability
of the power generation and the sensitivity of a frequency level specif-
ically for the muti-area power network. Hence, automatic generation
controller (AGC) is utilised to retrieve the frequency response and
regulate the power delivery by adjusting the accelerated governor speed
of the generator units based on considering the size of fuel, resulting in,
matching the power delivery with the power demand [1]. Consequently,
the frequency level restores to the standard value for the power system.
In the first design prototype of AGC, the researchers proposed the
flywheel controller for the AC-machine of generation to dampen the
frequency oscillation. However, it is not addressing the oscillation sup-
pression of the system when the loads are changing rapidly due to the
complex functionality of the AGC [2]. To design the accurate AGC in the
significant uncertainty of the multi-area power network, a robust control
system is required. This is because the robust control system exhibits
lower sensitivities for the change of highly parameter variations.

Recently, a proportional-integral-derivative (PID) has been added to
AGC system as a compensator because of its simpler accomplishment
and lower expenditure when compared with the classical control system
[3]. However, it faces the high frequency sensitivity under a competitive
load-demand specifically for the multi-area power grid owing to its
constant parameters, resulting in, poor dynamic performance. Hence,
several techniques had been used to adjust the parameters of the PID
controller. Among them, the authors in [4] proposed a novel PID
controller based on fuzzy logic controller (FLC) for the AGC system of a
two-area grid-connected system. The FLC is employed to address the
fixed elements of the PID controller adequately using the membership
function tools. The results of this proposal show that it has ability to
demonstrate the oscillations in the frequency response for various power
generation tests. Next, the authors in [5] designed a hybrid FLC-PID
controller with filter-fractional order integral for a two-area AGC sys-
tem. Firstly, the FLC technique is used to enhance the input of PID
controller, then, the filter-fractional order integral is demonstrated the
output of PID controller. The results of this study prove that the pro-
posed method address the various load disturbances when it is compared
with different conventional methods. Similarity, the scholars in [6]
employed the PID controller based on the type-2 of the FLC method for
the AGC system of a two-area grid network. The tuning parameters of
the FLC-AGC system is addressed in this work using a novel adaptive
symbiotic organism search technique. The outcomes of this work show
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that it returns the zero-point of frequency level with less undershoot,
overshoot and settling time. Although, those previous studies have been
provided the optimal AGC system under various states. However, they
did not discuss the ITAE performance index for the power system
network under an unbalance disturbance case. Further, the studies are
not cover all condition states.

In advanced step, the scholars in [7] used a developed algorithm
such as sine-cosine algorithm to regulate the memberships of the FLC
technique that is utilised in PID parameters. Then, this controller
method is applied on the AGC controller of a multi-area power system
network under different tests. The findings of this research prove that
the proposed method is the highest robust to address the load distur-
bance tests for diverse cases. Consequently, the scholar in [8] also used a
grey wolf technique which is classified as advanced algorithm to opti-
mise the control gain of PID-AGC controller for three-area power
network. Then, the FLC technique is implemented to improve the PID
elements. The results of this research demonstrate that the proposed
method is well supervisor to restore the frequency level of the three-area
of the power grid under various simulation tests. In other side, the au-
thors in [9] optimised a FLC-PID controller based on dragonfly algo-
rithm for AGC system. Hence, the scaling factors of this AGC design is
proposed based on the memberships of the FLC, resulting in, addressing
the gains of the PID controller. The outcomes of this work prove that this
proposal restores the frequency system of simulation test under the
linearity and non-linearity operation works.

In the same year, the authors in [10] presented an optimal hybrid
FLC-PID controller based on modified sine-cosine algorithm for two-area
of the AGC system with four generation units. This modified algorithm is
employed to adjust the elements of the FLC-PID controller based on
two-steps. As results, the standard frequency state of the power grid test
is addressed in a lower transient time with less rising undershoot and
overshoot. While, the researchers in [11] designed the AGC system for
multi-area power network based on interval type-2 FLC-PID technique
to address the huge action of frequency diversion. Then, a deep
Q-network algorithm is used to adjust the function design of the FLC
under various operating conditions. The finding results of this work
prove that it is improving the system performances of the AGC to carry
out the frequency response level at steady state error with the short time.
Alternatively, a novel fractional order integral-tilt-derivative controller
for a multi-area AGC system was proposed by the authors in [12]. The
AGC system’s settings are then optimized using a meta-heuristic tech-
nique based on different blocks. This proposed method proves that it is
more robust to address the various of power parameters until 50 % of
input error signals. Lastly, the authors in [13] used an arithmetic opti-
mized African vulture algorithm to optimise the proposed FLC-PID
controller for AGC system. A hybrid deregulating power system for
classical and renewable energy resources are simulated to assess the
vestige of this proposal. The outcomes show that the proposed method is
addressed the performance of the AGC by enhance its fitness up to 40 %.
Recently, the authors in [14] developed a novel algorithm based on
Aquila Optimizer to tune the parameters of the PID-AGC for a hybrid
power system network. Then, it is compared with the popular optimi-
sation algorithm such as particle swarm optimisation and whale opti-
mization algorithm under a deregulated case. Hence, the results prove
that it validates to address the stability of the hybrid power system at
this type of the fault case. In last years, the optimal parameters of
PID-AGC controller based on the neural network technique is used such
as in [15]. This type of system shows a higher performance to avoid the
load disturbances when it is applied on multiarea power grid. However,
it requires priory data to train it on unpredictive cases.

As noticed that, the provirus studies show the efficiently of the AGC
system based on the optimised PID controller using advanced optimi-
sation techniques, however, they presented a complex prototype of the
control system regarding to the hybrid controller stages. In addition, the
processing optimisation time is not address which is considered the most
important factor in the transiting case of the frequency response. Hence,
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Fig. 1. The outlook of a standard steam turbine.
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Fig. 2. Two-area grid-connected power system based on transfer function model.

hybrid algorithms that have a higher level of processing time have been
gained popularity and are being used widely in industrial applications
that require the faster processing time with designing a simpler proto-
type optimisation control tool [16].

In this paper, a hybrid aquila optimizer-sine-cosine algorithm
(HSCAO) that has a faster processing time is employed to address the
parameters of a PID-AGC for a two-area power system accurately. To
validate the performance and address the parameters of this hybrid al-
gorithm, CEC-2019, and classical benchmark issues with various di-
mensions are applied. Then, a statistical analysis technique is conducted
using Wilcoxon’s test and Friedman’s test to demonstrate the supervise
performance of the HSCAO optimisation regarding to other relative
optimising algorithms. Finally, an integral time absolute error (ITAE)
performance index is used to calculate the time response of the fre-
quency. Compared to the classical approaches for the FLC-AGC and PID-
AGC systems, the robust PID-AGC system’s results demonstrate that it
quickly restores the frequency level and controls the power delivery of
the multi-area power system network under a variety of condition tests
because of its quick response and low sensitivity. The rest of paper
structure is sorted as follows: The modelling of a two- area power system
is explained in Section 2. While, the design of the PID approach based on
AGC system is characterized in Sections 3. Next, Section 4 introduces the
HSCAO algorithm, whilst Section 5 discusses the proposed PID-AGC
method based on the HSCAO algorithm. The major results of the

application test are provided in section 6. Finally, Section 7 reports the
outcome of this research.

2. Two-area power system modelling

Turbines, generators, and load-demand are the primary components
of a grid-power system network. The main function of this system is to
use the mechanical energy of the turbine to generate electrical energy in
relation to the consumer’s load. Usually, steam turbine is employed for
these types of the system owing to their higher performance. A governor
and reheater are the main outlook part of the steam-turbine, as
explained in Fig. 1.

It is work on matching the output energy of the generator with the
consumer’s load. Consequently, the accelerating turbine changes regu-
lating to the load-consumers by changing the size value of an input
steam. As a results, the frequency response will offset from the standard
value. Recently, several proposed controls are designed to adjust the
speed error of turbine that called the AGC. The speed of the synchronous
generator can be calculated mathematically based on Eq. (1):

1

Q(s) = >Hs

(AP, — AP,) @

On the other hand, Eq. (2) is used to calculate the consumer’s load.
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Fig. 3. A power system network of two-are refer to state space approach.

AP, = AP, + DA® 2)

To determine the steam turbine, Eq. (3) is utilised:

AP, (s) 1
- - 3
AP,(s) 1+1(s) 3
Finally, Eq. (4) is used to compute the required steam.
AQ(s
APg = APref. - R( ) “4)

Eq. (5) indicates how the generator’s output power varies with the
steam turbine’s size:

1

APV(S) = m
4

AP,(s) 5)

Fig. 2. is represented the block-diagram of two-area power system
network based on the transfer function. Then, the state-space equations
of system are dravite to get simulation plant.

Typically, each power grid region has a governor, turbine, and load-
demand block with a connecting line to its decentral AGC system. For
the two-area of a power system network, 9 state equations are con-
structed for this transfer function. Control input Equations are (6) and

7):
l.ll =G (el) =G (31X4 +X9) 6)

u; = Gy(ez) = G2(ByXs —Xo) @)

As seen in Fig. 3, a state-space model for a two-area connected power
network has been built, with all 9 states feedback.

Now, the simulation signals of input variable disturbances are rep-
resented by AP; and AP;

Next, Eq. (8-11) show first area state variables:

X1 = /61 dt (8)
X2 = APgl (9)
X3 = APTl (10)

x4 = Af, (11)

While the state variables for 2°4 area are explained in Eq. (12-15):

X5 = / [ dt (12)
Xe = Asz (13)
X7 = APr (14)
x5 = Af, (15)
Finally, Eq. (16) shows the connected Tie line power of two-area:
Xo = APy, 16)

Then, the rotating mass and load-demand of power grid are repre-
sented in Eq. (17-20):

X4 + ‘L'let4 =K; (X3 — X9 — Dl) (17)
. K K K K
X4 = —IX3 — —IX4 — —1X9 - —lDl 18)
Tp1 Tp1 Tp1 Tp1
Xg + TPQ.X.B = Kz(X7 — X9 — Dg) (19)
. K K K K
Xg = =27 — —2Xg + —2Xg — —2D, (20)
sz sz Tp2 sz

For steam turbine blocks state space equations are utilised as follows
form (21-24):

X3 + T X3 = X 21

X3 = sz - i-7C3 (22)
71 711

X7 + TraXy = Xe (23)

. 1 1

Xy = —Xg — —X7 (24)
TT2 TT2

While, Egs. (26-28) show block governor based on state space
approach:
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. 1
X + T X2 = *R*x4 + (25)
1
1 1
Xg = —X — X4 +—Uy (26)
Tg1 Tg1 Tl
. 1
Xo + Tg2Xe = 7R7x8 + U 27)
2
. 1 1 1
Xg = —Xg ————Xg +—Uy (28)
Tg1 ngRz Tg2

Finally, Eq. (29) presents the power system network of the tie line
block;

X"Q = 27[(!)('5; — 27t(xx8 (29)

Now, the state equations indicated before may be represented as a
single-vector matrix, as shown in Eq. (30).

X =Ax+ Bu+aD (30)

where A, also known as the state-matrix, is a demission square matrix.
while, the control and disturbance signals are represented by B and a,
respectively, which are also the demission matrices. The vector of input
state-space is represented by ’x’, of 9x1 matrix. The signal of AGC ‘v’

disturbance ‘d’ are represented by 2x 1 vectors. The total-vectors ‘x’, ‘u’,
and ‘d’ can be composited as shown in Egs. (32-33) at this time.

X=[Xx3 X2 X35 X4 Xs X¢ X7 Xg Xo ]T (31)
R _ D,
o[z 3

Now, the 9 state-space equations are finally shown as the following
matrices (33-35):

[0 o o B, 0 0 O 0 1]
-1 -1
0 — 0 0 o0 0 0
Tg1 Ta Ry
o B K 5 o 0 o0 0 0
Tp1 Tp1
1 -1 1
00 — — 0 0 O 0o —
7T 7T 7T
A=|0 0 o0 o0 0 0 o B, 1 (33)
0 0 o0 o oL o L o
Tg2 TgQRz
1 -1
0 0 o0 0 0 — — 0 0
Tz T2
0 0 o0 o 0o o & K,
Tp2 Tp2
0 O 0 2n¢ 0 O 0 276 0

0
1

— 0

Tg1
0 o0
0 O

B=|0 O (34)
o L
Tg2
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0 0
0
0 0
?’? 0
a=| 0 0 (35)

0 0
0 0

0o K

Tpo

0 0

This state space equations will be used in the proposed algorithm
code to find the accurate parameters of the PID-AGC control system.

3. A PID controller based on AGC

The PID controller is considered the most common type in
manufacturing implementations owing to its simplicity and fastness. In
addition, it does not require accurate model of the plant and can be
understood by most engineers without being a controlling expert.
However, it is not efficient for a highly dynamic variation time of pro-
cessing plant such as AGC. The conventional of PID controller based on
AGC can be expressed mathematically in Eq. (36):

u(t) = K,ACE + K; / ACEdt + Kd% (36)

In contrast, ACE stands for processing plant error, which can be
expressed mathematically as Eq. (37):

e(t) = APy, + PAf (37)

Addressing the values of Kp, Ki and Kd are the major challenge to
employ the robust PID controller in industrial plant. Consequently, the
regulating of PID controller is the essential step to implement the effi-
cient PID controller. Generally, there are two methods to tune the ele-
ments of PID controller; try and error and Ziegler-Nichols. However,
those methods are not suitable for the processing Plant that has a highly
dynamic fluctuation such as the power system network. Hence, several
researchers have investigated the optimisation techniques to adjust the
parameters of PID controller. In this work, the HSCAO algorithm is
utilised to address the parameters of PID controller adequately. Then,
the robust PID controller is assessed under ITAE performance index
method to determine the transient response time of the system under
external disturbances.

4. Optimisation algorithms
4.1. Standard SCA algorithm

The SCA is described in ref. [17] to employ the characteristics of the
trigonometric function’s sine and cosine that have been used to address
the best candidate solutions. The fluctuating factors of a since cosine
mathematical model are used to evaluate the best candidate solutions.
Based on the likelihood that the global optimum will increase, it looks
for optimization problems with an adequate number of random solu-
tions and optimization steps. Hence, the following equations are the
definitions of the search equations utilised in SCA to determine the
position of candidate solutions:

yii!“ = Y; 4+ risin(ry) x ‘r3P§—Y§| 38

Y = Y} +rcos(ry) x |rsPi — Yi| (39)
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Fig. 4. The flowchart of HSCAO algorithm.

Those Equations are used in the SCA methodology as follows:

Y} + risin (r2) x |rsP} — Vi|,rs <05

40
Y; 4 ricos (rz) x [rsP} — Vi|,r4 > 0.5 (40)

t+1 __
Y =

The parameter r; is the potential area where the solution and the
target can be positioned, potentially within a specific region. This
parameter allows for the examination and utilisation of a search area
while maintaining an optimal balance between them. The process di-
vides the maximum iteration count in half, allocating one half to
diversification and the other half to enhancing exploration within a

(=)}

feasible search area [18]. The parameter r, determines the orientation
of the moment for a particular solution. The parameter r; quantifies the
significance of the weight assigned to P{. By manipulating the parameter
rs, Eq. (41) facilitates the transition from sine to cosine functions. The
mathematical updates for the parameters r;, rq, r2, and r4 are as
following:

t
n=a-axg

ry, = (2 X ﬂ') x rand (41)
r; = 2 x rand

ry = rand
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Table 1
Unimodal and multimodal test functions.
Problems  Objective Function Range fmin D
F1 5y -100,1 1
o) =3, %8 [-100,100]  © 0,30
n n -
F2 f(x) = Zi:o [xi| + [T i [-10,10] 0 10,30
F3 a i 2 [-100,100] 0 10,30
flx) = Zi:l (Zj:l Xj)
F4 f(x) = max; {|xi|,1 <i<n} [-100,100] 0 10,30
F5 ) = z:l [100()(? Cxa)? + (1 7Xi)2] [-30,30] 0 10,30
F6 fo) = 30 (Ixi +0.5))° [-100,200] 0 10,30
F7 f(x) = | ix! + random[0,1) [-128,128] 0 10,30
F8 fx) = 3", (7 Xisin( \xil)) [-500,500] 10,30
F9 f(x) = >7 | [x? — 10cos(2mx;) + 10] [-5.12,5.12] 0 10,30
F10 T Tan [-32,32] 0 10,30
f(x) = — 20exp( — 0.2 HZi:l x? | — exp HZ;:1 cos(27x;) | +20+ e
F11 B LR - X [-600,600] 0 10,30
f(x) =1+ —40002121 x? - [, cos(\ﬁ)
F12 T n-1 . n xi+1 -50,50 0 10,30
f(x) = H{lOsm(;ryl)} + Zi—l (vi — 1)2 [1+10sin? (ny;,;) +Zi:1 u(x;,10,100,4)], where y; =1+ T u(x;,a,k, [ 1
Kxi—a)"if x; >a
m{ 0 -a< x>a
K(-xi—a)™ —a< x
F13 N [-50,50] 0 10,30
f(x) = 0.1 sin®(3mx) + ) ) (6 — 1[I+
sin?(37%; + 1)]+(Xa — 1)*1 + sin? (27, )) +
> u(xi,5,100,4)
algorithmic exploration results from this method’s failure to take into
Table 2 account the potential contributions of individual solutions in defining
Comparative algorithm parameters. effective search pathways. To address this issue, two modifications are
Algorithm Parameter Value suggested for the conventional SCA algorithm, these modifications
SCA [16] A 5 involve the updated parameters, namely, r; and r3 in Eq. (41), as well as
WOA [23] A Decreased from 2 to 0 an enhanced search equation to improve the overall performance of the
B 2 algorithm by reaching a more accurate balance between exploration and
SMA [24] vp and v Decreased from 2 to 0 exploitation. A new general set of parameters, r; and r3, are produced by
FO [25] r 2'5 modifying Eq. (42) as following:
a
GP 0.5
AO [20] a 01 (t)axi
r = 1-(=
5 0.1 T (42)
AOA [26] ¢ 5 rs =r; x rand
u 0.5
MHA [27 b 0.05 e . . . .
271 Rp [0.1] In the second modification, the current solution Y} in the first section
P exp is replaced with the most optimal solution Pi. By implementing this
l Decreased from -2 to -1 modification, the algorithm gains the ability to efficiently explore areas
tCF D;“e_ased from 2 to 0 that show potential in close proximity to the individual optimal solu-
N :aap ve tions. This adjustment is beneficial in cases where the optimal solution is
NMRA [28] bp 0.5 limited to a specific area and does not offer sufficient guidance for the
A [0,11 search process. Consequently, the Modified Eq. (40) can be formulated
MFO [29] b 1 in the following manner:
t [-1,1]
GWO [30] A Decreased from 2 to 0 o plf + rysin (7'2) X |T3P§ _ Y1t|’ rs <05
MPA [31] R [0,11 S . . (43)
P 05 P} +ricos (rz) x |[rsP} — Yi|,r4 > 0.5

4.2. Modified Sine Cosine Algorithm (MSCA)

For meta-heuristic algorithms to grow increasingly proficient at
producing results, they must maintain a balanced strategy between
exploration and exploitation throughout the search process. However,
other studies have shown that the SCA commonly fails to maintain this
balance [19]. Particularly, when handling multimodal challenges of the
classic SCA strategy has a tendency to overemphasise diversity at the
expense of proper exploitation [18]. Only the best answer is kept for the
next iteration in the typical SCA method, where all prior solutions are
totally replaced with new ones with each iteration. Ineffective

4.3. Aquila Optimizer (AO)

In 2021, Abualigah et al.[20] introduced Aquila Optimizer such as
advanced algorithm based on swarm intelligence. This algorithm draws
inspiration from the versatile hunting tactics of the Aquila, which can be
skilfully adapted its predatory methods based on the different types of
prey. It hints its target with four potent behaviours: walking and grab-
bing prey, contour fighting with a brief glide assault, low fighting with a
slow fall attack, and high soaring with a vertical stoop. Therefore, four
mathematical model have been utilised to explain the procedure of the
AO algorithm

o Expanded Exploration (Y7)
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Table 3
Results of the test functions (F1-F13) based on classical benchmark problems.
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Fun No. Measure Comparative optimisation algorithms
HSCAO AO MSCA SCA SMA EO WOA
fi(x) Best 0 5.9145E-301 2.3356E-248 1.2270E-34 0 1.6105E-144 4.3834E-173
Worst 0 7.9371E-200 5.5187E-236 6.6359E-26 0 2.7010E-137 2.6941E-152
Average 0 3.9686E-201 2.7595E-237 4.8680E-27 0 1.3822E-138 1.3471E-153
STD 0 0 0 1.5188E-26 0 6.0328E-138 6.0242E-153
fa(x) Best 0 1.1539E-152 6.6255E-137 6.6060E-23 0 5.8528E-117 1.5350E-79
Worst 0 1.5199E-99 4.3851E-132 2.2576E-18 1.1649E-182 3.0855E-106 5.3533E-76
Average 0 1.0906E-100 2.4369E-133 3.4186E-19 5.8243E-184 1.5747E-107 7.1710E-77
STD 0 3.6326E-100 9.7715E-133 6.2318E-19 0 6.8925E-107 1.4403E-76
f3(x) Best 0 9.6912E-300 3.8680E-157 4.0471E-15 0 1.1853E-78 1.1640E-03
Worst 0 1.4199E-190 5.2990E-135 8.3518E-07 0 2.9019E-68 2.7236E+02
Average 0 7.0995E-192 2.6495E-136 4.8068E-08 0 3.4564E-69 2.4649E+01
STD 0 0 1.1849E-135 1.8710E-07 0 7.9752E-69 6.1582E+01
fa(x) Best 2.6714e-273 5.0737e-80 6.9726E-13 5.0080E+01 3.1872E-271 2.2224E-08 1.1909E+00
Worst 1.2796e-187 3.2349e-52 9.2911 E+01 7.7751E+01 4.1925E-146 3.2840E-06 9.3667E+01
Average 6.5053e-189 1.6174e-53 4.6455 E+00 6.6715E+01 2.0963E-147 5.0470E-07 6.7158E+01
STD 0 7.2335e-53 2.0775E+01 6.9172E+00 9.3749E-147 7.0982E-07 2.5579E+01
f5(x) Best 4.5723E-07 3.9738E-06 5.9106E+00 6.5350E+00 9.5098E-06 4.0683E+00 5.6791E+00
Worst 1.4431E-03 5.5662E-03 8.0561E+00 5.7169E+02 2.1006E-02 4.7033E+00 8.5339E+00
Average 6.4192E-03 5.9230E-04 6.6091E+00 3.5465E+01 4.8222E-03 4.3129E-+00 6.2874E+00
STD 2.0380E-03 1.2250E-03 5.4860E-01 1.2621E+02 6.3066E-03 1.8169E-01 6.2250E-01
fo(x) Best 2.0736E-09 2.5533E-07 9.9369E-03 1.6607E-01 3.3763E-06 0 1.4837E-05
Worst 3.4706E-05 1.2922E-04 7.5461E-01 7.9726E-01 3.8534E-05 4.9304E-32 1.3158E-04
Average 2.8458E-06 1.2807E-05 1.8074E-01 4.0811E-01 1.2197E-05 4.0059E-33 5.9341E-05
STD 7.8284E-06 2.8784E-05 2.1228E-01 1.6358E-01 9.5215E-06 1.1315E-32 3.4797E-05
fr(x) Best 8.9027E-06 6.5528E-06 4.3670E-05 5.6417E-05 2.9416E-06 2.8094E-05 7.4159E-05
Worst 2.0313E-04 1.3826E-04 7.8264E-04 9.2785E-03 3.6715E-04 1.0876E-03 3.9658E-03
Average 6.2305E-05 5.0675E-05 2.2082E-04 1.7889E-03 7.0059E-05 2.6544E-04 9.3760E-04
STD 5.4427E-05 3.4201E-05 1.8254E-04 2.0821E-03 8.3717E-05 2.6916E-04 1.0556E-03
fa(x) Best -4.1885E+03 -4.1895E+03 -2.6979E-+03 -2.6929E+03 -4.1898E+-03 -3.8329E+03 -4.1897E+03
Worst -2.1936E+03 -2.3241E+03 -1.4873E+03 -1.9536E+03 -4.1898E+03 -2.6410E+03 -2.8098E+03
Average -2.8955E+03 -3.8775E+03 -2.1363E+03 -2.2631E+03 -4.1898E+03 -3.2654E+03 -3.6872E+03
STD 4.8923E+02 6.4494E+02 2.9835 E+02 2.2357 E+02 3.2277E-04 3.1937 E+02 5.5428E+02
fo(x) Best 0 0 0 0 0 0 0
Worst 0 0 1.7536E+01 1.9643E+01 0 2.9848E+00 0
Average 0 0 1.5207 E+00 9.8216E+01 0 1.4924E+01 0
STD 0 0 4.7414 E+00 4.3923 E+00 0 6.6743 E+00 0
fio(x) Best 8.8817E-16 8.8817E-16 4.4408E-15 8.8817E-16 8.8817E-16 4.4408E-15 8.8817E-16
Worst 8.8817E-16 8.8817E-16 4.4408E-15 1.6431E-13 8.8817E-16 4.4408E-15 7.9936E-15
Average 8.8817E-16 8.8817E-16 4.4408E-15 2.6467E-14 8.8817E-16 4.4408E-15 3.5527E-15
STD 0 0 0 4.2983E-14 0 0 2.2689E-15
fin(x) Best 0 0 0 0 0 0 0
Worst 0 0 2.7502E-01 6.4433E-01 0 7.3960E-02 5.1852E-01
Average 0 0 4.3885E-02 9.928E-02 0 3.6980E-04 1.0211 E-01
STD 0 0 6.9274E-02 2.1211E-02 0 1.6538E-03 1.6596 E-01
fiz2(x) Best 1.5453E-10 1.5792E-08 3.0484E-01 3.101E+00 2.9682E-05 2.1707E-05 1.3380E-02
Worst 9.7415E-06 1.4132E-05 6.2344E-01 3.6874E+07 2.7446E-02 4.0713E-03 1.6532E-01
Average 1.5175E-06 1.3506E-06 3.9866E-01 6.1011E+06 7.3348E-03 4.7975E-04 4.1710E-02
STD 2.2800E-06 3.1726E-06 8.4381E-02 9.8604E+06 8.0396E-03 1.1759E-03 4.1869E-02
fiz(x) Best 1.0048e-08 1.9525E-07 3.2990E+00 5.4730E+05 2.3113E-04 1.0236E-01 3.8002E-01
Worst 1.4107E-04 3.7256E-04 4.2090E+00 6.5514E+07 1.4377E-01 1.1164E+00 2.1803E+00
Average 1.0344e-05 4.0321E-05 3.7807E+00 2.1261E+07 2.5438E-02 5.6873E-01 1.2201E+00
STD 3.0998e-05 9.0754E-05 2.0368E-01 1.6957E+07 3.3696E-02 3.0347E-01 5.6001E-01
(W|L|T) (5]2]6) (0]9]4) (0]11]2) (0]10]3) (11715) (1]10]2) (0]10(3)
Mean 2.1923 2.8461 5.0384 6.0769 2.5769 4.3465 4.9230
Ranking 1 3 6 7 2 4 5

In the first step, the initial approach (Y;) involved the Aquila iden-
tifying the location of its prey and subsequently choosing an ideal
hunting area by ascending to an elevated position with a prominent
hump. The behaviour of Aquila uses as the mountain view to explore the
search area that is mathematically represented as the following equa-
tion:

Yi(t+1) = Yoe(t) x (1- %) + (Yaa(t) — Yoeer(£) x rand) (44)
1 N

Yu(t) :K’ZYi(i),vj: 1,2,...,Dim (45)
i=1

e Narrowed Exploration (Y3)
In the second step, the most popular method of Aquila hunting is

addressed. It includes a brief glide to attack the prey subsequent to
descending and encircling it within the specified area. Eq. (9) can be
represented this behaviour mathematically.

Y5(t+1) = Ypest(t) x LF(D) + Yg(t) + (2 — h)xrand) (46)

The solution for the subsequent iteration, denoted as Y,(t + 1), is
obtained using the second search method, also known as contour flight
with a short glide attack. This solution exists within a dimensional space
denoted by D. A key component in this computation is the Levy flight
distribution function, represented as LF(D), which can be calculated
using Eq. (47). The method also employs a random solution Yg(t),
selected within the range of [N] during the ith iteration.



S.D. Al-Majidi et al.

Table 4

Results using classical test functions (F1-F13) (D= 30) compared with the relative optimal algorithms.

Results in Engineering 25 (2025) 103951

Fun No. Measure Comparative optimisation algorithms
HSCAO MHA NMRA MPA WOA GWO MFO
filx) Average 0 0 1.12E-86 5.05E-23 1.11E-83 3.14E-33 1.17E+03
STD 0 0 7.88E-86 4.93E-23 7.37E-83 5.32E-32 3.25E+03
falx) Average 7.63E-205 1.63E-180 3.46E-45 3.08E-13 1.88E-54 7.11E-20 3.11E+01
STD 0 0 1.52E-44 2.98E-13 5.69E-54 6.53E-20 2.00E+01
f(x) Average 0 1.16E-318 2.54E-85 6.71E-05 2.97E+04 3.85E-08 1.89E+04
STD 0 0 1.32E-84 1.37E-04 9.33E+03 6.91E-08 1.23E+04
fa(x) Average 3.85E-201 1.00E-185 3.50E-45 3.15E-09 3.72E401 2.18E-08 6.03E+01
STD 0 0 1.52E-44 1.75E-09 2.87E+01 1.74E-08 9.31E+00
fs(x) Average 2.01E-03 2.84E+01 2.89E+01 2.45E+01 2.74E+01 2.67E+01 1.32E+04
STD 3.55E-03 3.23E-01 2.54E-02 4.37E-01 4.79E-01 6.86E-01 3.11E+04
fo(x) Average 9.33E-06 3.86E-01 6.56E+00 1.43E-08 8.45E-02 4.70E-01 5.92E+02
STD 1.36E-05 1.28E-01 5.90E-01 6.25E-09 1.20E-01 2.77E-01 2.38E+03
(%) Average 1.59E-04 9.65E-05 6.94E-04 1.00E-03 2.30E-03 1.20E-03 3.02E+00
STD 1.30E-04 1.19E-04 6.10E-04 4.32E-04 2.70E-03 5.08E-04 7.37E+00
fo(x) Average 0 0 0 0 1.11E-15 1.64E-+00 1.52E+02
STD 0 0 0 0 7.95E-15 3.06E+00 3.04E+01
fro(x) Average 8.88E-16 8.88E-16 8.88E-16 1.44E-12 4.44E-15 4.26E-14 1.16E+01
STD 0 0 0 8.94E-13 2.24E-15 3.32E-15 8.60E+00
fir(x) Average 0 0 0 0 4.28E-02 8.60E-03 5.70E-03
STD 0 0 0 0 6.70E-02 3.46E-02 2.85E-02
fiz(x) Average 6.40E-07 1.65E-02 1.09E+00 1.39E-09 7.40E-03 2.59E-02 5.32E+00
STD 1.05E-06 8.20E-03 2.56E-01 6.50E-10 6.30E-03 1.31E-02 6.64E+00
fiz(x) Average 1.22E-05 2.69E-01 2.97E+00 6.53E-04 2.25E-01 3.34E-01 8.02E+00
STD 2.43E-05 8.12E-02 1.38E-01 2.60E-03 1.60E-01 2.02E-01 7.71E+00
uxo
LF(D) = 0.01 x T (47)  Y,(t+1) = QF x Ypexe(t) — (G, x Y(t) x rand) — G, x LF(D) + rand
[v] < G
. (51
I'(1+p) x sinc %)
0 = —IH (48) G 5
r(%> «px 2T QF(t) = t1-D (52)
The values u and v are generated at random from O to 1. Where p is a G =2xrand -1 53)

fixed value that is established at 1.5. The spiral shape in the search is
represented by z and h in Eq. (49), these values are computed as follows:

z=k xsin(¢)
h =k x cos(¢)
k =15 +0.00565 x D, (49)
3xxm

¢ =—0.05 x D, +T

where rs is ranging the search cycles from 1 to 20, while, D, is an integer
numbers between 1 and dimension size.

o Expanded exploitation (Y3)

In this step, the Aquila addresses the position of its prey, then, it
descends vertically for an initial attack, reducing its speed if the prey is
spotted which is known as the low-altitude and descent attack. This
method involves the Aquila precisely designating the prey area, pre-
paring for landing, and initiating an attack. The Aquila uses the selected
area as its method vector for getting close to and attacking the prey. This
behaviour, which involves observing the prey’s response to the initial
attack, is mathematically represented as in Eq. (50).

Ys(t+1) = (Ypese(t) — Yua(t)) x @ — rand + ((Ub — Lb) x rand + Lb) x &
(50)

e Narrowed exploitation (Y,)

In the pursuit and capture strategy, Aquila in this approach follows
the prey, taking into account its potential escape direction, and subse-
quently launches an assault on the terrestrial target. This behaviour can
be presented to mathematical expression as follows.

G2:2><<1—,1£,)

The function QF(t) is used to harmonize the search approach. In
other side, the parameter of G; tracks the prey’s movements of Aquila
that is taking a random value from the inclusive range [-1, 1]. While, G,
represents the decline in flight incline as Aquila pursues its prey, with a
linear reduction.

4.4. Hybrid AO and MSCA algorithms

The Aquila Optimizer (AO) [20] is a swarm intelligence algorithm
that replicates four foraging strategies which is inspired by the predation
behavior of Aquila. It has a rapid convergence, high search efficiency,
and robust global exploration capability [21]. However, it has been
observed that the AO has insufficient local exploitation capability and is
prone to falling into local optima, leading to premature convergence
[22]. The experimental findings for the Modified Sine Cosine Algorithm
(MSCA) indicate weaknesses in population diversification and slow
convergence speed during the exploration phase, also faces challenges in
handling complex problems with high dimensional features. Despite the
modifications, it still struggles with certain optimization problems. To
address these shortcomings, a new hybrid algorithm, the Hybrid Aquila
Optimizer-based Sine Cosine Algorithm (HSCAO), is proposed. This al-
gorithm combines the strengths of the AO and MSCA, aiming to leverage
the advantages of both algorithms while mitigating their inherent
disadvantages.

The HSCAO algorithm is designed to offer a better solution for
addressing the challenges faced by traditional optimization algorithms
in the domains which requires high convergence speed with better
performance. The HSCAO algorithm operates by running the AO and



S.D. Al-Majidi et al.

107100 |

fitness function

107200 [

107300 |

100 200 300 400 500 900 1000

Iterations

600 700

F3

10-100 [

fitness function

107200 [

10300 |

300 400 500 600 700
Iterations

100 200

F5

fitness function

100 200 300 400 500 900 1000

Iterations

600 700 800

Results in Engineering 25 (2025) 103951

107100 [

fitness function

10200 [

107300

500 600 700 800 900 1000
Iterations

200 300 400

100

F4

HSCAO
AO
MSCA
SCA
SMA
EO
WOA

10750 F

10100 |

fitness function

10150 |

50 100 150 200 250 300 500
Iterations

350 400 450

F6

HSCAO
AO
MSCA =
SCA
SMA =
EO
WOA

e
3

fitness function

1020 F

109

100 200 300 400 500 600 700 800 900 1000

Iterations

Fig. 5. Convergence patterns of various algorithms in comparison based on classical issues.

MSCA in parallel, with each algorithm operating on its own population
of solutions. To avoid the insufficient exploitation phase of the AO
method, the fact that the exploration phase is implemented at the first
step of the proposed algorithm around 2/3 of the iteration. Hence, the
effective intensification phase of MSCA is implemented in place of the
AO’s restricted exploration phase. Consequently, the objective is to
accelerate the process of achieving the optimal solution by enhancing
the exploitation stage of the hybrid HSCAO. After each iteration, the
algorithm compares the best solution found by each method and updates
a global best solution variable accordingly. This approach ensures that
the advantages of both algorithms are utilized and the best solution is
selected based on the fitness function value. The flowchart of the pro-
posed algorithm is shown its major steps, as presented in Fig. 4. In the
first stage, the initial parameters of the HSCAO algorithm are set. Then,
the optimal location of boundaries is calculated based on fitness func-
tions. In the AO method, the exploitation phase is insufficient to despite
the fact of the exploration phase at 2/3 of the iteration. In order to
prioritize the exploitation capability, the effective intensification phase
of MSCA is implemented in place of the AO’s restricted exploration
phase. Consequently, the objective is accelerated the process of the
optimal solution by enhancing the exploitation stage of the hybrid
HSCAO. This algorithm will be used to enhance the performance of the
PID-AGC system based on addressing the optimal parameters of the PID

10

control.
5. Proposed HSCAO algorithm based on AGC

The findings and analysis related to the suggested HSCAO are pre-
sented in this section, and its comparisons with respect to other algo-
rithms based on AGC. Four subsections make up this section.
Comprehensive details regarding the benchmark functions and
comparative algorithms used to assess the suggested algorithm’s per-
formance are given in the first subsection. To give the sensitivity analysis
of the suggested approach, comprehensive results on traditional
benchmark problems are shown in the second subsection, resulting in,
the improved parameter fits of the HSCAO algorithm. To demonstrate
the impact of the suggested algorithm comparison with the relative
optimal algorithms, the third subsection examines CEC 2019 benchmark
challenges which is considered more challenge. In the fourth subsection,
the optimization issue instances in the PID-AGC system’s tuning pa-
rameters are finally presented based on a fitness function.

5.1. Parameter settings and the test suite

This section provides extensive details about the classical benchmark
suite used for the analysis of proposed algorithm. The benchmark suite
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Fig. 5. (continued).

consists of thirteen classical problems that its problems are unimodal
and multimodal problems, with variable dimension sizes. The unimodal
problems that have only one global minimum whereas for multimodal
problems are multiplied local minima’s and one global minimum.
Unimodal problems help in understanding the exploitative capabilities
of an algorithm whereas multi-modal problems are highly challenging
problems and help to check both explorative and exploitative tendencies
of an algorithm. Thus, the benchmarks will test the effectiveness of the
proposed algorithm in terms of explorative and exploitative tendencies.
The details of the benchmark functions used is given in Table 1.

In Table 2, the parametric details of the algorithms used for com-
parison are added. The major algorithm includes SCA [16], WOA [23],
SMA [24], EO [25], AO [20], AOA [26], MHA [27], NMRA [28], MFO
[29], GWO [30], and MPA [30]. Also, the basic parameters and their
corresponding values are presented. Apart from that, the population size
50 and stopping criteria is kept same for all the algorithms. The stopping
criteria is the total number of iterations, and in the present case they are
equal t01000. For all the algorithms used for comparison, it is kept in
mind that the overall number of function evaluations remain same.

5.2. Comparison on classical benchmark problems

The results, which are displayed in Table 3, are meant to assess the
performance of the HSCAO algorithm by means of traditional

11

benchmarks. The best, worst, mean, and standard deviation (STD) de-
viation values of 30 runs are displayed in this table. Other than that, a
fixed dimension size of 10 is used to present the findings. Two statistical
tests namely Wilcoxon’s p-rank and Friedmann tests [32] are done to
prove the significance of the proposed algorithm at 5 % level of signif-
icance. The results for Wilcoxon’s p-rank test are given in terms of win,
loss and tie (w/1/t), where w denotes that the suggested algorithm’s
outcomes are superior to those of the comparator algorithm, whereas 1
means that the results of the proposed algorithm are worse as compared
to the test algorithm and finally t stands for P-tie which indicates that
either the outcomes of the two algorithms are statistically similar or
there is no correlation between them. The Friedmann test results are
presented in the form of a rank commonly referred as f-rank, and the
algorithm scoring the best rank is considered as the overall best.

In Tables 3 and Table 4, the comparative results of HSCAO with
respect to MSCA, MHA [27], NMRA [28], AO [20], SCA [16], EO [25],
MPA [31], WOA [23], GWO [30], and MFO [29] for 10 and 30 dimen-
sional problems respectively. The best, worst, mean, and standard de-
viation (STD) values of 30 runs are used to display the results. For
functions f1 to f4, and f5, f9 to f12, the proposed HSCAO provides the
better statistical results whereas for f6 EO provide the best results and
for functions {7 and f8 SMA gives the best results. The statistical results
in terms of w/1/t and p-test in the last lines of Table 4, shows that of all
the algorithms under comparison, the proposed HSCAO scores the first
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Table 5
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Results of the HSCAO algorithm in compression to other methods for CEC2019 test functions.

Fun No. Measure Comparative optimisation algorithms
HSCAO AO MSCA SCA AOA EO WOA
& (%) Best 3.9418E + 04 4.4699E + 04 4.1896E + 04 1.4089E + 08 1.3598E + 06 9.8254E + 04 5.8768E + 10
Worst 4.9605E + 04 9.0952E + 04 9.5831E + 08 3.9500E + 10 3.6414E + 10 5.9835E + 10 1.1350E + 12
Average 4.2582E + 04 5.4336E + 04 7.5196E + 07 1.1139E + 10 3.4939E + 09 9.0304E + 09 5.6831E + 11
STD 2.8676E + 03 1.0146E + 04 2.1453E + 08 1.2303E + 10 9.3076E + 09 1.4674E + 10 2.9535E + 11
& (x) Best 1.7352E + 01 1.7358E + 01 1.7357E + 01 1.7375E + 01 1.8060E + 01 1.7343E + 01 4.7742E + 02
Worst 1.7390E + 01 1.7403E + 01 1.7683E + 01 1.7660E + 01 1.9848E + 01 1.7348E + 01 6.6269E + 03
Average 1.7369E + 01 1.7377E + 01 1.7391E + 01 1.7467E + 01 1.9217E + 01 1.7345E + 01 2.2372E + 03
STD 1.0460E-02 1.2255E-02 6.9479E-02 6.2465E-02 5.0702E-01 1.0232E-03 1.8576E + 03
&3(x) Best 1.2702E + 01 1.2702E + 01 1.2702E + 01 1.2702E + 01 1.2702E + 01 1.2702E + 01 1.2702E + 01
Worst 1.2702E + 01 1.2702E + 01 1.2704E + 01 1.2703E + 01 1.2706E + 01 1.2702E + 01 1.2703E + 01
Average 1.2702E + 01 1.2702E + 01 1.2703E + 01 1.2703E + 01 1.2703E + 01 1.2702E + 01 1.2702E + 01
STD 7.3412E-06 7.3800E-06 5.3107E-04 9.3470E-05 1.1690E-03 2.2128E-06 3.4768E-05
84(x) Best 6.5034E + 01 1.2634E + 02 2.1982E + 02 6.7852E + 02 6.5138E + 03 9.2181E + 01 2.0577E + 03
Worst 1.1627E + 03 2.3034E + 03 5.7327E + 03 2.6784E + 03 2.8555E + 04 9.5095E + 02 9.7162E + 03
Average 1.9799E + 02 8.0077E + 02 1.4759E + 03 1.4844E + 03 1.2325E + 04 4.0440E + 02 5.7255E + 03
STD 2.3892E + 02 5.4691E + 02 1.8066E + 03 4.9776E + 02 6.1909E + 03 2.2608E + 02 2.2116E + 03
&5 (x) Best 1.2456E + 00 1.2655E + 00 1.8299E + 00 2.0374E + 00 2.5903E + 00 1.1394E + 00 2.4002E + 00
Worst 2.0923E + 00 2.2326E + 00 2.4951E + 00 2.3905E + 00 6.0463E + 00 1.7435E + 00 5.1572E + 00
Average 1.4734E + 00 1.5829E + 00 2.0416E + 00 2.2233E + 00 4.3610E + 00 1.4295E + 00 3.7438E + 00
STD 2.2704E-01 3.0723E-01 1.6139E-01 9.6322E-02 9.6549E-01 1.6938E-01 8.1991E-01
86 (x) Best 7.9459E + 00 7.9458E + 00 9.6049E + 00 9.8069E + 00 7.3835E + 00 9.4559E + 00 8.1841E + 00
Worst 1.1395E + 01 1.2224E + 01 1.2094E + 01 1.2131E + 01 1.0803E + 01 1.1355E + 01 1.1952E + 01
Average 1.0172E + 01 1.0755E + 01 1.0950E + 01 1.1110E + 01 8.9877E + 00 1.0136E + 01 1.0727E + 01
STD 1.0834E + 00 1.0833E + 00 6.5944E-01 6.5974E-01 8.9491E-01 4.2046E-01 9.4789E-01
& (x) Best 1.2284E + 01 8.3454E + 01 3.0144E + 02 4.6046E + 02 3.4101E + 01 1.5945E + 02 6.6138E + 02
Worst 6.0572E + 02 8.3168E + 02 1.1036E + 03 1.0633E + 03 4.7227E + 02 2.3322E + 02 1.2669E + 03
Average 2.7575E + 02 3.4378E + 02 7.4648E + 02 8.4291E + 02 2.0528E + 02 1.4805E + 02 9.4509E + 02
STD 1.5409E + 02 1.8583E + 02 2.1700E + 02 1.6182E + 02 1.2826E + 02 4.5965E + 02 1.7310E + 02
8s(x) Best 3.5660E + 00 4.1942E + 00 4.3850E + 00 5.1300E + 00 4.6287E + 00 6.0068E + 00 5.3996E + 00
Worst 6.5051E + 00 6.0753E + 00 6.8868E + 00 6.8422E + 00 6.1982E + 00 6.9246E + 00 7.3206E + 00
Average 5.1921E + 00 5.2745E + 00 5.9553E + 00 6.1248E + 00 5.5875E + 00 6.3167E + 00 6.4517E + 00
STD 7.9635E-01 5.7805E-01 6.0817E-01 5.0553E-01 4.8782E-01 2.5292E-01 4.8119E-01
8o(x) Best 2.7606E + 00 2.9956E + 00 4.6422E + 00 2.2902E + 01 2.7924E + 02 2.7933E + 00 4.8685E + 02
Worst 6.1373E + 00 6.4775E + 00 2.9170E + 02 2.6481E + 02 1.6400E + 03 5.6484E + 00 1.2954E + 03
Average 4.4169E + 00 5.0082E + 00 3.5617E + 01 1.0021E + 02 7.5734E + 02 4.0023E + 00 8.4974E + 02
STD 1.0163E + 00 1.0171E + 00 8.5592E + 01 5.9906E + 01 3.8309E + 02 9.3267E-01 2.4361E + 02
810(x) Best 2.9159E + 00 3.3682E + 00 2.0368E + 01 2.0329E + 01 2.0003E + 01 2.0418E + 01 2.0143E + 01
Worst 2.0619E + 01 2.0562E + 01 2.0647E + 01 2.0558E + 01 2.0410E + 01 2.0663E + 01 2.0621E + 01
Average 1.8012E + 01 1.9173E + 01 2.0513E + 01 2.0464E + 01 2.0204E + 01 2.0555E + 01 2.0397E + 01
STD 5.8520E + 00 4.0794E + 00 7.5293E-02 6.7826E-02 1.2243E-01 7.4320E-02 1.2563E-01
(W|L|T) (6]3]1) (0]9]1) (0]9]1) (0]9]1) (118]1) (2]7]1) (0]9]1)
Mean 1.7 2.9 4.1 5.3 4.5 3.7 5.8
Ranking 1 2 4 6 5 3 7

rank. Apart from that the convergence patterns shown in the Fig. 5,
shows that the proposed HSCAO converges significantly faster for most
of the test problems with respect to other algorithms. In addition, it was
the most competitive processing time when it is compared with the other
relative optimization algorithms. Hence, it was the most robust and
efficient to rest at solving issues by the population size. Consequently, it
is carried to implement in the real application test of power system
network that requires the higher processing time to address the high
fluctuations in frequency response.

5.3. CEC 2019 benchmark results

In this subsection, extensive results on CEC-2019 benchmarks are
presented in Table 5. The CEC 2019 benchmark suite is a 100-digit
problem test suite and consists of 10 highly challenging problems
[33]. The same set of algorithms namely MSCA, AO [20], SCA [16], AOA
[26], EO [25], and WOA [23], are used for a comparative study with
respect to HSCAO. The results are presented as the best, worst, mean and
STD values of 30 runs. The results in Table 5 shows the HSCAO was
achieving the best performs for the function g1, g3, g4, g7 to g10, in
contract, the EO gives the best results at function g2 and g5. Overall, the
proposed HSCAO was the best for eight benchmark problems across the
iterations number, while EO algorithm was the good performance at two
problems only. Meanwhile, other comparative algorithms delis to
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address the local solutions. This can be further acknowledged from the
convergence curves in Fig. 6 when it is addressing the processing time of
the issues compared with the relative optimization algorithms. From the
convergence curves, we can see that the HSCAO algorithm has the best
convergence patterns with respect to other algorithm for most of the test
functions. As results, this further proves that the HSCAO performs
significantly better for these problems and can be considered as a po-
tential candidate for future optimization research. Hence, the proposed
algorithm is implemented within the PID-AGC system to addressing the
sensitivity of power system network by addressing the uncertain pa-
rameters of the controller due to its fastest processing time when it is
compared with other relative optimization algorithm tests.

5.4. Optimisation problem

Following the validation of the HSCAO algorithm using the classical
and CEC-2019 benchmark issues, which demonstrate the wide-ranging
performance of the suggested algorithm in comparison to the relative
optimization algorithms, Fig. 7 illustrates the use of the suggested PID
control in conjunction with an AGC for a two-area power system. On the
basis of the validation tests, Table 6 presents the main parameters of the
HSCAO algorithm. Table 7’s parameters are then used to apply this
hybrid HSCAO algorithm to the two-area power grid. The historical
changing error of the frequency response and power generation of the
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Fig. 6. Convergence curves for different algorithm based on CEC-2019 benchmarks.

application test are employed as the input signal of the robust PID-AGC,
whilst, the signal of the governor is addressed as the output, as discussed
in Eq. (36) and Eq. (37). Hence, The HSCAO algorithm addresses the
accurate parameters of the robust PID-AGC with the minimum ITAE
performance index as expressed in following Eq. (54) [34]:

ITAE—/(/AFi/-i-/APn«e/.t dt

This objective function based on ITAE index is used to minimize the
overshoot and oscillations of the frequency response and the power
delivery of the power system based on the optimal control theory.
Consequently, the optimal parameters of the PID control are addressing
to design the robust AGC system for the multi-area power system
network, as presented in Table 8. This is because the optimal state
feedback control based on hybrid algorithm such as HSCAO algorithm
gives the better behavior systematic tuning trade-offs between the
tracking signal of the power disturbances and the control activity of
frequency response. As a result, it will address the challenges of the
computational complexity and feasibility of power system networks [35,
36]. In the next step, this robust PID-AGC system based on the HSCAO
algorithm is addressed the parameters of PID control and AGC system

(54)
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under various scenarios when it is applied on the two-area power system
network to show the stability and scalability of its performance. This
proposed algorithm has a faster processing time to find the parameters
as explained in section 4 and proved in section 5.

6. Results and discussion

A MATLAB Simulink model environment for a two-area power
network is designed to test the robust PID-AGC system. Next, it is
distinguished with the FLC-AGC, and PID-AGC to demonstrate its effi-
cacy and scalability. Then, the ITAE performance index is employed to
determine the transient response time of the system under three
disturbance cases. After that, the three simulation scenario cases are
considered as following: simple step changing load-disturbance, vari-
able step changing load-disturbance and unbalance step changing load-
disturbance. Those disturbance tests are represented various cases that
occurs in a competitive load-demand to test the high sensitivity of AGC.
Finally, they are employed for the two-area power network to analysis
the sensitivity of the robust PID-AGC control for each area.

In the first case, the simple step-load disturbances are simulated
based on the rapid changing from 0 % to 60 % at 50 seconds and un-
changing for area-1 and area-2, respectively. Although, both of the
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Fig. 7. The block diagram of PID-AGC based on the HSCAO algorithm.
Table 6 Table 7
The fitting parameters of HSCAO algorithm. The designed parameters of power system based on area.
Parameters Value Parameters Area 1 Area 2
Alpha 0.1 The power generation unit (MW) 250 400
Delta 0.1 The frequency level (Hz) 50 50
Omega 0.005 The speed governor (pu) 0.05 0.0625
Beta 1.5 The time governor (sec.) 0.2 sec 0.3 sec
Dimension of search space 100 The time turbine (sec.) 0.5 sec 0.6 sec
Population size 50 The inertia generator (sec.) 5 4
Standard deviation 30 The sensitivity of load-coefficient 0.6 0.9
Linear reduction 2
Search cycles ranging 1-20

14
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Table 8
The tuning parameters of Optimal PID-AGC vs Conventional PID-AGC.

The area of power system Conventional PID-AGC Robust PID-AGC

Area-1 B1=20 B1=20
Kp= 0.7 Kp= 58.55
Ki=2 Ki= 98.45
Kd=1 Kd= 39.57

Area-2 B=16.92 B=16.92
Kp= 0.7 Kp= 78.54
Ki=2 Ki= 99.72
Kd=1 Kd= 59.78

robust controller and classical controllers were an independent fre-
quency response for this simple load fluctuations, as presented in Fig. 8
(a) and (b). However, the AGC system of the optimised PID controller
was the most reliable to response the deviation loads of costumer tests
when compared to the FLC-AGC and PID-AGC that have been fluctuating
around the reference test signal with higher overshoots. Furthermore,
the power deliveries of the generation units were the highest stability
with the lowest steady state error comparison to the same approaches as
well as it was the lest overshoot, as shown in Fig. 8(b) and (c). In
contrast, the conventional FLC-AGC and PID-AGC are taking a bite
longer time to address the reference value of the frequency response
with the higher maximum rise time for various changing steps compared
to the proposed method. As results, it is achieved the lowest ITAE index
about 0.6s whiles the conventional FLC-AGC and PID-AGC were about
2.7s and 3.9s.

In the second case, the complex step-load disturbances are employed
on the area-1 changing as following; 40 %, 80 %, 40 % and 20 % at 10
seconds,0 second, 30 seconds and 40 seconds respectively. While, the
step- load disturbance of the area-2 is changing from 0 %, 40 %, 10 %, 40
% and 20 % at 10 second, 30 seconds and 40 seconds. The outcome of
this test shows that the robust PID controller is also achieved the highest
stability for frequency response with the lowest fluctuation around the
standard frequency response of the power grid when it is applied on
those variable load disturbances regarding to the comparison controller
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cases, as presented in Fig. 9(a) and (b). Further, the power generation of
both areas are confirmed the enhancement in the performance accord-
ing to its minimizing convergence time with the lowest oscillation
compared with the other approach controllers, as explained in Fig. 9(c)
and (d). In other side, the conventional PID-AGC and conventional FLC-
AGC were a lesser dynamic performance to address the overshoot and
the oscillation at various time tests. Moreover, they tack a bite longer
time to much the power demand with power generation. Hence, the
robust PID-AGC is approved the best validation test when it reaches to
the stability state at ITAE index of 3.9s while the conventional FLC-AGC
and PID-AGC are 8.7s and 14.5s respectively.

Lastly, the third scenario is designed based on an unbalance load-
disturbance to assess the validation of the proposed PID approach
under a fault-case. This unbalance condition-test is rapidly changing for
simulation signal that is value of 0.25pu-amplitude and 50 Hz-frequency
scale for a sinusoidal wave. As noticed in Fig. 10, the three-controller
systems face a huge fluctuation challenge around the standard fre-
quency level at various simulation time. However, the proposed
controller was the least steady-state error of oscillation response for the
frequency level and power delivery of the grid-connected regrading to
the FLC-AGC and PID-AGC. In addition, it was the most damping ratio to
address the zero-point state with the lowest overshoot and rising time
during all the time test comparison with the other classical approaches.
Further, it was the lowest oscillation for the frequency response and
power delivery at the various states. Hence, it achieves the acceptable
fluctuating frequency response regarding to the standard value which is
less than + 0.5 % during the test time. Consequently, it is achieved the
best ITAE performance index about 5.2s compared to the FLC-AGC and
PID-AGC of 10.9s and 17.4s respectively. This is because the optimal
PID-AGC based on the HSCAO algorithm gives the highest robust trade-
offs between disturbances and the wide variation of PID-AGC parame-
ters. In other side, the conventional PID-AGC was the faster to address
the steady state error compared with the FLC-AGC system. Finally, the
summarizing results of ITAE index of these three scenarios are depicted
in Table 9. Whilst, the sensitivity of AGC system using the five seconds of
interval Simulink time at the fault condition is presented in Table 10,
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Fig. 8. The outcome of case-1 for (a)frequency of area-1, (b)frequency of area-2, (c)power of area-land (c)power of area-2.
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Fig. 10. (a) Oscillation response in frequency and (b) Output-Power delivery, at an unbalance power disturbance (case-3).

Table 9

The total ITAE value for Proposed method, FLC method and PID method.

Method ITAE performance index

Case-1 Case-2 Case-3
Robust PID-AGC 0.6 3.9 5.2
Conventional FLC-AGC 2.7 8.7 10.9
Conventional PID-AGC 3.9 14.5 17.4
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which shows the robustness of proposed PID method based on the
HSCAO algorithm when compared with the conventional FLC controller
and the conventional PID controller which shows that the proposed al-
gorithm addresses the parameters of PID-AGC adequately, resulting in,
achieving the lower ITAE index in various time intervals.

7. Conclusions

The robust PID controller for the higher performance AGC in a two-
area power system network has been designed in this study using the
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Table 10

The sensitivity of AGC system based on interval time.
Time Afl Af2 AP-tie line ITAE

Robust PID FLC PID Robust PID FLC PID Robust PID FLC PID Robust PID FLC PID

0 0 0 0 0 0 0 0 0 0 0 0 0
5 —0.0001 0.0009 —0.0009 0.0001 0.0066 0.0018 0.0016 0.0078 0.0206 0.0523 0.2115 0.5004
10 0.0009 —0.026 —0.0048 0.0011 0.0085 0.0149 0.0062 0.0941 0.0667 0.1554 1.9506 2.5708
15 0.0005 —0.0008 0.0007 —0.0001 —0.0053 —0.0012 —0.001 —0.0026 —0.0133 0.5834 2.1383 4.2128
20 0.0006 0.0013 0.0004 —0.0001 —0.0005 —0.0003 —0.0004 —0.0063 —0.0041 0.5891 3.758 4.3523
25 0.0001 0.0002 0.0002 —0.0001 0.0003 —0.0001 —0.0002 —0.0021 —0.0015 0.599 4.6042 4.3593
30 0.0002 —0.0001 0.0002 —0.0001 —0.0001 —0.0001 —0.0001 —0.0004 —0.0004 0.5918 5.013 4.3651
35 0.0091 0.0408 —0.1006 0.0801 0.1049 0.2014 0.0112 0.2056 0.6153 3.0953 6.8698 14.5378
40 0.0051 —0.0016 —0.0003 0.0001 0.0066 0.0083 0.0056 0.0069 0.0049 3.1084 9.7653 14.8569
45 0.0042 —0.0085 0.0084 —0.0071 —0.0036 —0.0098 —0.0017 —0.0036 —0.0188 3.4643 12.617 20.9939
50 0.0001 0.0009 0.0002 —0.0001 —0.0003 —0.0002 —0.0003 —0.0042 —0.0028 3.4757 15.7262 21.2676
55 0.0001 0.0001 0.0002 —0.0001 0.0002 —0.0001 —0.0001 —0.0014 —0.0011 3.4775 16.1139 20.2815
60 0.0001 0.0001 0.0002 —0.0001 —0.0001 —0.0001 —0.0001 —0.0036 —0.0004 3.4804 15.7455 20.2993
65 0.0001 0.0001 —0.0001 —0.0001 0.0001 —0.0001 —0.0001 —0.0001 —0.0008 3.4829 18.189 20.3166
70 0.0001 0.0002 —0.0003 0.0001 0.0001 —0.0001 0.0001 0.0011 0.0001 3.4837 18.6858 20.3604
75 0.0051 0.0012 0.0012 —0.0011 —0.0021 0.0091 —0.0011 —0.0082 0.0018 4.4844 19.1997 20.4334
80 0.0041 0.0001 0.0004 —0.0081 —0.0011 0.0041 —0.0091 —0.0082 0.0003 4.4855 19.7782 20.4956
85 0.0021 —0.0001 0.0002 —0.0001 0.0001 —0.0001 —0.0001 0.00013 —0.0007 4.4863 20.3594 20.573
90 0.0051 0.0082 —0.0102 0.0061 0.0091 —0.0401 0.0091 0.02028 —0.0904 5.4873 21.0226 21.6491
95 0.0001 0.0002 —0.0003 0.0001 —0.0001 0.0001 0.0001 0.0001 0.0005 5.4883 21.6785 22.7289
100 0 0 0 0 0 0 0 0 0 0 0 0
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