
This article was downloaded by: Publisher: KKG Publications

Registered office: 18, Jalan Kenanga SD 9/7 Bandar Sri Damansara, 52200 Malaysia

Key Knowledge Generation

Publication details, including instructions for author and Subscription information:

http://kkgpublications.com/technology/

A Computer Program for Fault Diagnosis and Assessment of Quality Insulation Oil in Power Transformer Based Dissolved Gas Analysis

M. M. YAACOB¹, AHMED RAISAN HUSSEIN², M. F. OTHMAN³

^{1,2,3} Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor, Malaysia.

Published online: 17 October 2015

To cite this article: M. M. Yaacob, A. R. Hussein, M. F. Othman, "A computer program for fault diagnosis and assessment of quality insulation oil in power transformer based dissolved gas analysis," *International Journal of Technology and Engineering Studies*, Vol. 1, no. 3, pp. 98-106, 2015.

DOI: https://dx.doi.org/10.20469/ijtes.40005-3

To link to this article: http://kkgpublications.com/wp-content/uploads/2015/12/IJTES-40005-3.pdf

PLEASE SCROLL DOWN FOR ARTICLE

KKG Publications makes every effort to ascertain the precision of all the information (the "Content") contained in the publications on our platform. However, KKG Publications, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the content. All opinions and views stated in this publication are not endorsed by KKG Publications. These are purely the opinions and views of authors. The accuracy of the content should not be relied upon and primary sources of information should be considered for any verification. KKG Publications shall not be liable for any costs, expenses, proceedings, loss, actions, demands, damages, expenses and other liabilities directly or indirectly caused in connection with given content.

This article may be utilized for research, edifying, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly verboten.

Vol, 1, no. 3, pp, 98-106, 2015

A COMPUTER PROGRAM FOR FAULT DIAGNOSIS AND ASSESSMENT OF QUALITY INSULATION OIL IN POWER TRANSFORMER BASED DISSOLVED GAS ANALYSIS

M. M. YAACOB ¹, AHMED RAISAN HUSSEIN ^{2*}, M.F.OTHMAN ³

^{1,2,3} Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor, Malaysia

Keywords:

Computer Program
Fault Diagnosis
Insulation Oil
Dissolved Gas Analysis.

Received: 13 June 2015 Accepted: 15 August 2015 Published: 17 October 2015 Abstract. Accurate faults diagnostics and oil insulation evaluation of electrical power transformers for life-long endurance are the key issue. The durability of transformer function is significantly decided by the quality of insulation oil, which deteriorates over time due to temperature fluctuations and moisture contents. Precise determination of faults in early stages and the efficient assessment of oil excellence in protecting transformers from potential failures occur during operation that can avoid sizeable economic losses. A computer program using traditional software play important role in this regard. The dissolved gas analysis in oil is a reliable method in the diagnosis of faults and assessing the insulation oil quality in transformers. The safeguarding teams in high voltage stations often suffer from the occurrence of sudden faults that results severe damage and heavy monetary loss. The oil must be appropriately treated to circumvent such failure. A computer program is performed to diagnose the faults and to assess the status of insulation oil quality in power transformers. A suitable treatment is achieved via Roger's ratio method, IEC ratio method and doernenburg ratio method depending on the dissolved gas analysis in the oil. The use of the C ++ program and windows easy process to use, and is highly enough for fault diagnosis and oil quality evaluation. The programing is capable of assessing the oil quality as per IEEE standard and C57-104-1991 and IEC standard 599 specifications.

© 2015 KKG Publications. All rights reserved.

INTRODUCTION

The quest of finding a suitable method for accurate fault diagnostics and assessing the oil quality of electrical power transformer for life-long safeguard is ever-demanding. Undoubtedly, the longevity of transformer function and working efficiently have certainly been decided by its insulating quality. Generally, this insulation deteriorates over a time span with the variation of temperature, moisture, oxygen and other environmental factors. The judgment of faults and the assessment of oil quality is one of the most important sources in protecting transformers operational failures. The power transformers are exceptionally expensive and the damage in insulation system often causes high economic loss [1]. In the past, several methodologies are adopted for the diagnosis of faults in the transformer oil to assess the oil quality and different smart standards are developed with the approved specifications including IEEE standard C57-104.1991 [2] and IEC standard 599 [3]. Most of the assessment and diagnosis are based on the computer program. Despite many efforts the efficient and precise determination method of the nature of faults and subsequent

rectification mechanism for superior performance is far from being achieved.

It is well known that electrical transformer oils possess a dual function, including insulation and cooling. Their superior insulation and cooling attributes in the coils under a severely elevated change in temperature over extended operational period protects them from faults generation. However, the presence of high electrical pressure, temperature, and harsh environmental conditions produce hydrocarbons (gases) within the oil with strong negative impact on the functioning [4]. Therefore, transformers faults diagnosis and oil quality assessment are obligatory for protective maintenance schedules [5]. Several methods have been developed for fault diagnostics. However, for the assessment of oil quality one has to separate it.

We determine the concentrations of these gases based on the dissolved gas analysis (DGA) in power transformer oil. The DGA methods(Roger's ratio method, IEC ratio method and doernenburg ratio method) are used to develop a computer program for precise diagnosis and simultaneous assessment. In this paper used C++ software and matched with

*Corresponding author: Ahmed Raisan Hussein E-mail: alhusseinahmed70@gmail.com

IEC standard 599 to identify the fault types and IEEE standard C57-104.1991 to enough is capable of assessing the quality of oil as per (TCG). The appropriate treatments including single filtering and degassing, double filtering and degassing, as well as reclamation are applied without reusing the oil. The results are analyzed, comparisons are made, and the accurate diagnostics are achieved.

LITERATURE REVIEW

Recently, several interpretative techniques such as IEC 60599 Standard ratio codes, IEEE Standard C57-104, Roger and Doernenburg ratio codes, Key gas method, CIGRE guidelines, MSZ-09-00.0352 National Standard ratio codes

and graphical method of Duval triangle are developed to predict the emergence of faults and to determine their types. All these methods of fault diagnosis are based on a celebrated DGA scheme [6].

In the Key gas method the decomposition of gases in the transformers oil and paper insulation are caused by temperature dependent faults. The occurrence of various faults such as overheating of oil and cellulose, corona and arcing in oil produce certain gases and their proportions act as faults indicator types [7].

In Doernenburg's ratio method values of CH4/H2, C2H6/C2H2, C2H2/CH4, and C2H2/C2H4 are used to indicate the emergence of thermal fault (corona and arcing) see table1.

TABLE 1
SUGGESTED DIAGNOSIS FROM GAS RATIOS OF DOERNENBURG METHOD [9]

Suggested	R1=CH4	1/H2	R2=C2H	2/C2H4	R3=C2F	I2/CH4	R4=C2F	H6/C2H2	
Diagnosis	Extracted	Extracted From		Extracted From		Extracted From		Extracted From	
	Oil Gas	Space	Oil Gas S	Space	Oil Gas	Space	Oil Gas	Space	
1- Thermal	>1.0	>0.1	< 0.75	<1.0	< 0.3	< 0.1	>0.4	>0.2	
Decomposition									
2- Corona (Low	< 0.1	< 0.01	Not Sign	ificant	< 0.3	< 0.1	>0.4	>0.2	
Intensity PD)									
3-Arcing (High	>0.1	>0.01	>0.75	>1.0	>0.3	>0.1	< 0.4	< 0.2	
Intensity PD)	< 0.1	< 0.01							

Based on thermal degradation principles and DGA this method utilizes ANS/IEEE Standard C57.104-1991. The method being a complex one with insufficient ratio

ranges, the implementation may result in no interpretation [6, 8].

TABLE 2 SUGGESTED DIAGNOSIS FROM GAS RATIOS OF IEC METHOD [10]

Case	C2H2	<u>CH4</u>	C2H4	Characteristic fault
No.	C2H4	H2	C2H6	
0	< 0.1	>0.1 < 1	< o.1	No fault
1	< o.1But not significant	< o.1	< 1	Partial discharges of low energy density
2	>1 < 3	< o.1	< 1	Partial discharges of low energy density
3	> 3	>0.1 < 1	> 3	Discharges of low energy
4	>1 < 3	>0.1 < 1	> 3	Discharges of High Energy
5	< 0.1	>0.1 < 1	< 3	Thermal fault of low Temperature < 150 °C
6	< o.1	< 3	< 1	Thermal fault of low Temperature $< 150 \text{ C}^{\circ}$ - 300 C°
7	< o.1	> 3	> 1 < 3	Thermal fault of medium temperature range 300 C° - 700 C°
8	< o.1	> 3	>3	Thermal fault of high temperature >700 C°

The Duval triangle method considers the concentrations (ppm) of methane (CH4), ethylene (C2H4), and acetylene (C2H2) and expresses (CH4 $\,+\,$ C2H4 $\,+\,$

C₂H₂) as a total gas percentage. The evaluation relies upon a chart (work point) in the triangular coordinate system which is subdivided into fault zones. The located point in the fault zone

signifies the likely fault type that gets generated from gas concentrations combination [9].

IEC Basic Ratio Method is similar to the Roger's Ratio method except the ratio C₂H₆/CH₄ is excluded because of limited temperature range of decomposition see table 2. Other gas ratios such as C₂H₂/CH₄, CH₄/H₂, C₂H₄/C₂H₆ are used to generate the codes for interpretation [10]. Finally, the Roger's ratio method is regarded as the most widely used

techniques. Typically, three or four ratios are used for sufficient accuracy. For instance, the initial Roger's ratio method uses four ratios such as CH₄/H₂, C₂H₆/CH₄, C₂H₄/C₂H₆ and C₂H₂/C₂H₄ to diagnose the incipient fault conditions and the normal condition as summarized in table 3 [11]. The types of generated faults in the oil can be determined via the algorithm once the gases the ratios are known.

TABLE 3
SUGGESTED DIAGNOSIS FROM GAS RATIOS OF ROGER'S METHOD. [11]

CH4/H2	C2H6/CH4	C2H4/C2H6	C2H2/C2H4	Suggested Diagnosis
<0.1 >1.0	>1.0	>1.0	>0.5	Normal
>=0.1	>1.0	>1.0	>0.5	Partial Discharge corona
>=0.1	>1.0	>1.0	>=0. 5 or >=3.0 >3.0	Partial Discharge corona with Tracking
<0.1 >1.0	>1.0	>=3.0	>=3.0	Continuous discharge
>1.0 <1.0	<1.0	>= 1.0 or >= 3.0 < 3.0	>= 0.5 or >= 3.0 < 3.0	Arc-with power follow through
>1.0 <1.0	<1.0	<1.0	>= 0.5 < 3.0	Arc-no power follow through
>= 1.0 or >= 3.0 < 3.0	<1.0	<1.0	< 0.5	Slight Overheating to 150 $^{\circ}$
>= 1.0 or >= 3.0 < 3.0	>= 1.0	<1.0	< 0.5	Overheating 150 – 200 C°
>1.0 <1.0	>= 1.0	<1.0	< 0.5	Overheating 200 – 300 C°
>1.0 <1.0	>1.0	>= 1.0 < 3.0	< 0.5	General conductors overheating
>= 1.0 < 3.0	<1.0	>= 1.0 < 3.0	< 0.5	Circulating currents in windings
>= 1.0 < 3.0	<1.0	>= 3.0	< 0.5	Circulating currents core and tank; overloaded joints

METHODOLOGY

The program is designed on the basis of dissolved gas analysis (DGA) methods in the oil. Roger's ratio method, IEC ratio method and doernenburg ratio method are used to

diagnose the faults and TCG method is employed in the process of assessing the insulating oil quality as per the specification of IEC standard 599 and IEEE C57.104.1991,

respectively. The flow chart of the algorithm is displayed in Figure 1.

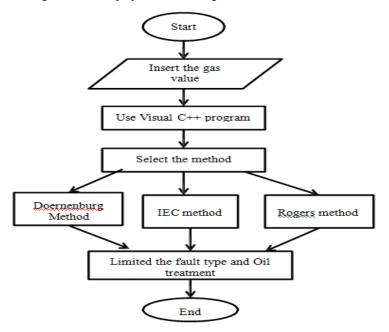


Fig. 1. Flowchart of the program

Visual C++ programming language is used and the data for dissolved gases in the oil are inserted through the

menu driven windows where a message showing the type of faults and the form of state oil appeared as shown in Figure 2.

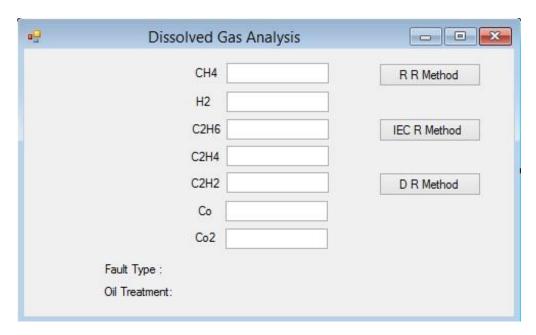


Fig. 2. Window of interface program

Forty samples are taken from the oil insulation for power transformers and sent to a laboratory for analysis to determine the oil dissolved gas ratios for gases including hydrogen, methane, ethane, ethylene, acetylene, Carbon monoxide and Carbon dioxide. These gases are considered as input data for the program as summarized in table 4.

 $\label{eq:table 4} {\sf TABLE}\,4$ THE VALUE OF GASES TAKEN FROM FORTY SAMPLES.

No.of		THE VALUE	OF GASES IF		value	Lo.	
samples	CH4	H2	C2H6	C2H4	C2H2	CO	CO2
1	4	2	5	3	0.001	152	6608
2	5	13	3	4	3	116	2525
3	11	0.001	4	3	0.001	96 57	4188
4 5	0.01 2	0.01 11	1 2	1 2	0.001 0.001	57 124	2580 2664
6	3	11	2	3	0.001	92	1657
7	7	5	6	0.01	0.001	78	1177
8	0.01	0.01	0.001	0.01	0.001	23	1043
9	7	14	1	61	0.001	1050	5836
10	4	13	1	44	0.001	730	2334
11	0.001	7	0.0001	28	0.001	355	2374
12	0.01	6	0.001	8	0.001	193	2031
13	49	25	69	10	0.01	343	1309
14	65	40	87	12	0.01	408	1456
15	0.1	1	0.1	13	0.01	151	1909
16	27	10	49	4	0.01	146	683
17	109 90	789	11	156	873	515	5347
18 19	90 44	647 144	10 12	129 118	638 583	428 192	2439 3945
20	38	379	7	46	383 198	150	3943 2287
21	0.01	8	0.001	13	0.001	214	1943
22	2	0.01	0.0001	12	0.001	144	1310
23	3	2	1	14	0.001	163	1132
24	4	0.1	1	8	0.001	64	1158
25	0.002	0.001	0.01	6	0.001	125	1309
26	0.001	12	0.01	26	0.002	234	2696
27	4	0.002	1	25	0.002	267	2238
28	4		1	25	0.001	221	2122
29	31	10	89	7	0.001	165	1065
30	0.001	0.01	0.01	2	0.001	68	685
31	9	190	25	3	0.01	393	3029
32	8	199	20	3	0.01	256	1886
33	8	149	17	3	0.01	215	1861
34	0.01	22	8	1	0.001	155	1098
35	0.01	3	0.001	1	0.001	39	828
36	2	7	1	1	0.001	31	739
37	8	40	2	1	0.001	41	855
38	0.01	0.1	0.001	1	0.001	68	745
39	2	10	5	2	0.0001	154	4297
40	2	12	3	1	0.0001	129	2333

After entering the data into the program through the window interface, the fault diagnosis is performed and the transformer oil treatment is carried out. The algorithm achieves good results in

terms of fault diagnosis and oil status assessment as provided in table 5

 ${\it TABLE~5}$ THE RESULTS ON DIAGNOSING FAULTS AND QUALITY INSULATING OIL ASSESSMENTS.

No.		Fault Type		Oil Treatment
	Rogers Method	IEC Method	Doernenburg Method	
1	Overheating-150-	Fault in cellulose	No fault	Good oil no filtering
	200 °c	insulating paper		
2	Unidentifiable	No fault	Unidentifiable	Good oil no filtering
3	Unidentifiable	No fault	No fault	Good oil no filtering
4	Unidentifiable	Fault in cellulose insulating paper	No fault	Good oil no filtering
5	Unidentifiable	Fault in cellulose insulating paper	No fault	Good oil no filtering
6	General conductor overheating	Fault in cellulose insulating paper	No fault	Good oil no filtering
7	Unidentifiable	Fault in cellulose insulating paper	No fault	Good oil no filtering
8	Core and tank circulating currents	Fault in cellulose insulating paper	No fault	Good oil no filtering
9	Unidentifiable	No fault	Unidentifiable	Good oil no filtering
10	Unidentifiable	Unidentifiable	Unidentifiable	Good oil no filtering
11	Unidentifiable	Unidentifiable	No fault	Good oil no filtering
12	Unidentifiable	Unidentifiable	No fault	Good oil no filtering
13	Overheating-150-200 °c	Thermal fault of low temperature between 150 –	No fault	Single filtering and degassing
14	Overheating-150-200 c	Thermal fault of low temperature between 150 – 300 °c	No fault	Single filtering and degassing
15	Unidentifiable	Fault in cellulose insulating paper	No fault	Good oil no filtering
16	Overheating-150-200 °c	Thermal fault of low temperature between 150 – 300	No fault	Good oil no filtering
17	Continuous sparking to flooting potential	Unidentifiable	Arcing (high intensity pd)	Double filtering and degassing
18	Continuous sparking to flooting potential	Unidentifiable	Arcing (high intensity pd)	Double filtering and degassing
19	Continuous sparking to flooting potential	Fault in cellulose insulating paper	Arcing (high intensity pd)	Double filtering and degassing
20	Continuous sparking to flooting potential	Fault in cellulose insulating paper	Arcing (high intensity pd)	Double filtering and degassing
21	Unidentifiable	Unidentifiable	No fault	Good oil no filtering

No.		Fault Type		Oil Treatment
	Rogers Method	IEC Method	Doernenburg Method	
22	Unidentifiable	Unidentifiable	No fault	Good oil no filtering
23	Unidentifiable	Unidentifiable	No fault	Good oil no filtering
24	Unidentifiable	Fault in cellulose insulating paper	No fault	Good oil no filtering
25	Unidentifiable	Unidentifiable	No fault	Good oil no filtering
26	Unidentifiable	Fault in cellulose insulating paper	No fault	Good oil no filtering
27	Unidentifiable	Unidentifiable	No fault	Good oil no filtering
28	Normal deterioration	Unidentifiable	No fault	Good oil no filtering
29	Overheating-150-200 °c	Thermal fault of low temperature between $150 - 300^{\circ}$ c	No fault	Single filtering and degassing
30	Unidentifiable	Unidentifiable	No fault	Good oil no filtering
31	Overheating-200- 300°c	Partial discharges of low energy density	No fault	Single filtering and degassing
32	Overheating-200- 300°c	Partial discharges of low energy density	No fault	Single filtering and degassing
33	Overheating-200- 300°c	Partial discharges of low energy density	No fault	Single filtering and degassing
34	Unidentifiable	Partial discharges of low energy density	No fault	Good oil no filtering
35	Unidentifiable	Fault in cellulose insulating paper	No fault	Good oil no filtering
36	Unidentifiable	Fault in cellulose insulating paper	No fault	Good oil no filtering
37	Unidentifiable	No fault	No fault	Good oil no filtering
38	Unidentifiable	Unidentifiable	No fault	Good oil no filtering
39	Overheating-200-300°c	Fault in cellulose insulating paper	No fault	Good oil no filtering
40	Overheating-200-300°c	Fault in cellulose insulating paper	No fault	Good oil no filtering

RESULTS

After inserting the data ratios of gas-derived samples as furnished in the table 4, the program is tested in each case. The results as summarized in table 5, are appeared to be good and in agreement with the specifications of approved matching standard approved to diagnose faults and assess quality of insulating oil.

DISCUSSION AND CONCLUSION

The achieved results from our algorithm suggest that one of the significant and necessary maintenance steps must be to identify the status of transformer oil in service to ensure long term functioning. In fact, there are many other methods to diagnose faults and to assess the insulating oil quality via the dissolved gas analysis (DGA). However, we select the Roger's ratio method, IEC ratio method and Doernenburg ratio method, because it precisely provides more details about the types of faults occur in the transformers insulating oil. The insulating oil evaluation is

performed through the knowledge of oil deterioration coefficient, which is calculated from the TCG method. Our simple computer program using visual C++ software is capable of detecting the type of faults and can assess the oil status once the values of dissolved gases are entered. In the present developed algorithm the interfacing is very easy and straightforward. A series of conducted tests using this program reveal superior results. The maintenance teams in the sub- stations can promptly act to rectify sudden breakdown of power transformers due to the emergence of faults. In Figure 3 represents a comparison of the methods used in the dissolved gas analysis of the form of percentages to show the extent of compliance with the actual results in the diagnosis of faults and assess the quality of insulating oil. Rogers method was the matching percentage is 50%, the IEC method was matching percentage is 75%, and the Doernenburg method the matching percentage is 60%. As in the assessment of the quality

insulating oil, where the matching percentage is 98%. We note that the methods used in the diagnosis of faults sometimes share a certain diagnosis of fault and sometimes specializes in one way of the three ways to diagnose fault it. In general the final results that

compared with the actual results that have been taken in the maintenance of substations and the matched percentages were good and as in Figure 4.

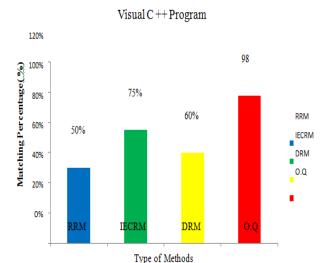


Fig. 3. Comparisons of DGA methods in Visual C++ program

Fig. 4. The Results Comparison with Actual Results

Total program Results

We introduce a simple and yet accurate computer program to identify the fault type and assess the oil quality in the power transformers. The dissolved gas analysis in oil being the reliable method is used for faults diagnosis and insulation oil quality assessment. Roger's ratio method, IEC ratio method and Doernenburg ratio method using DGA in the oil is used where the software employed visual C++ program. The program is highly reliable to diagnose the fault and assessing the quality of insulation oil. The obtained results are quite satisfactory as per IEEE standard and C57-104 and IEC standard 60599 specifications. Furthermore, based on the software results the

maintenance team can rectify the occurrence of sudden faults that results power disruption and economic loss. The nature of faults is accurately and efficiently detected and the oil replacement is cited as output in the interfacing.

ACKNOWLEDGEMENTS

The authors are grateful to the university technology Malaysia (UTM), the research management center of UTM, and the faculty of electrical engineering of the department of power for their financial and technical support.

REFERENCES

[1] Z. Wang, Y. Liu, N. C. Wang, T. Y. Guo, F. T. Huang and P. J. Griffin, "Artificial intelligence in power equipment fault diagnosis," in *Power System Technology*, 2000, *Proceedings* (vol. 1, pp. 247-252). IEEE.

- [2] T. Committee, I. Power and E. Society, "IEEE Std C57.104'-2008 (Revision of IEEE Std C57.104-1991), IEEE Guide for the Interpretation of Gases Generated in Oil-Immersed Transformers. 2009.
- [3] C. Prix and P. Code, *International Standard*. 1999.
- [4] N. A. Muhamad, B. T. Phung, T. R. Blackburn and K. X. Lai, "Comparative study and analysis of DGA methods for transformer mineral oil," In *Power Tech*, 2007 IEEE Lausanne (pp. 45-50). IEEE.
- [5] K. F. Thang, K. R. Aggarwal, J. A. McGrail and G. D. Esp, "Analysis of power transformer dissolved gas data using the self-organizing map," *Power Delivery, IEEE Transactions on*, vol. 18, no. 4, pp. 1241-1248, 2003.
- [6] T. K. Saha, "Review of modern diagnostic techniques for assessing insulation condition in aged transformers," *Dielectrics and Electrical Insulation, IEEE Transactions on*, vol. 10, no. 5, pp. 903-917, 2003.
- [7] K. Sabina, "A review of lifetime assessment of transformers and the use of dissolved gas analysis," 2007.
- [8] A. Singh AND P. Verma, "A review of intelligent diagnostic methods for condition assessment of insulation system in power transformers," in *International Conference on Condition Monitoring and Diagnosis*, 2008, (pp. 1354-1357). IEEE.
- [9] B. Németh, S. Laboncz, I. Kiss and G. Csépes, "Transformer condition analyzing expert system using fuzzy neural system," in *Electrical Insulation (ISEI), Conference Record of the 2010 IEEE International Symposium on* (pp. 1-5). IEEE.
- [10] A. A. Suleiman, N. A. Mohamad, N. Bashir, A. S. Alghamdi and M. Aizam, "Improving accuracy of DGA interpretation of oil-filled power transformers needed for effective condition monitoring," in *Condition Monitoring and Diagnosis (CMD)*, 2012 International Conference on (pp. 374-378). IEEE.
- [11] S. Hmood, A. Abu-Siada, M. A. Masoum and S. M. Islam, "Standardization of DGA interpretation techniques using fuzzy logic approach," in *Condition Monitoring and Diagnosis (CMD)*, 2012 International Conference on (pp. 929-932). IEEE.

— This article does not have any appendix. —

