Republic of Iraq Ministry of Higher Education and Scientific Research University of Baghdad College of Engineering Department of Civil Engineering

Development of Integrated Sustainable System for Oil Industry in Iraq

A thesis

Submitted to the College of Engineering of the University of Baghdad – Iraq in a Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Civil Engineering - Construction Management-

> By Ryad Tuma Hazem

> > Supervised by

Asst. Prof. Dr. Hatem Khaleefah Breesam

8/9/2019

يش والتّواليَّدُمْزَاليَّدِر و

حدق الله العظيم

سورة القمر ايه (49)

<u>Notíce</u>

The research assignments have been represented in the thesis as part of the contract that has been concluded with the Ministry of Oil - represented by Missan Oil Company as first part, and the College of Engineering/University of Baghdad, as the second party.

Supervisor's Certificate

I certify that this thesis titled "Development of Integrated Sustainable System for Oil Industry in Iraq" has been prepared by **Ryad Tuma Hazem** under my supervision at the Civil Engineering Department, University of Baghdad, in partial fulfillment of the requirements for the degree of PhD in science of Civil Engineering-Construction management.

Signature:

Supervisor: Asst. Prof. Dr. Hatem Khaleefah Breesam

Date:

In view of the available recommendations, I forward this thesis for debate by the examining committee.

Signature:

Asst. Prof . Dr. Abbas A. Alawi Position: Head of Civil Engineering department Date: / /2019

Supervisor's Certificate

I certify that this thesis titled "Development of Integrated Sustainable System for Oil Industry in Iraq" has been prepared by Ryad Tuma Hazem under my supervision at the Civil Engineering Department, University of Baghdad, in partial fulfillment of the requirements for the degree of PhD in science of Civil Engineering-Construction Management.

Signature: Recesam Date:

In view of the available recommendations, I forward this thesis for debate by the examining committee.

Signature: D. D. DIllov' Asst. Prof. Dr. Abber A. Dlacon Position: Head of Civil Engineering department Date: / /2019

Certification of Examining Committee

We certify that we have read this dissertation entitled "**Development of Integrated Sustainable System for Oil Industry in Iraq**" and as Examining committee examined the student "**Ryad Tuma Hazem**" in its contents and in what is connected with it, and that is our opinion, it is meets the standard of the thesis for the degree of PhD in science of Civil Engineering – construction management.

Signature:	Signature:	
Name: Professor.	Name: Assistant professor.	
Dr. Sawsan Rasheed Mohammed	Dr. Kadhim Raheim Erzaij	
(Chairman)	(Member)	
Date: /09/2019	Date: /09/2019	
Signature:	Signature:	
Name: Assistant Professor.	Name: Assistant Professor.	
Dr. Wadhah Amer Hatem	Dr. Tareq A. Khaleel	
(Member)	(Member)	
Date: /09/2019	Date: /09/2019	
Signature:	Signature:	
Name: Assistant professor.	Name: Assistant professor.	
Dr. Abbas Mohammed Burhan	Dr. Hatem Khaleefah Breesam	
(Member)	(Supervisor)	
Date: /09/2019	Date: /09/2019	

Approved by College of Engineering/ University of Baghdad

Signature:

Name: Prof. Dr. Saba Jabbar Neamah Al-Khafaji

Acting dean of college of Engineering

Date: \ \ 2019

Certification of Exam	nining Committee
We certify that we have read this dis	ssertation entitled "Development of
Integrated Sustainable System for	Oil Industry in Iraq" and as
Examining committee examined the stu	udent "Ryad Tuma Hazem" in its
contents and in what is connected with	h it, and that is our opinion, it is
meets the standard of the thesis for the	degree of PhD in science of Civil
Engineering - construction managemen	и.
Signature:	signature: Widtherh.
Signature: Sauce	Name: Assistant professor.
Dr. Sawsan Rasheed Mohammed	Dr. Kadhim Raheim Erzaij
(Chairman)	(Member)
Date: /09/2019	Date: /09/2019
Signature:	Contra Larra
Name: Assistant Professor.	Signature: Jareg Name: Assistant Professor.
Dr. Wadhah Amer Hatem	Dr. Tareg A. Khaleel
(Member)	(Member)
Date: /09/2019	Date: /09/2019
Signature:	Signature: N1.2
Name: Assistant professor.	Name: Assistant professor
Dr. Abbas Mohammed Burhan	Dr.Hatem Khaleefah Breesam
(Member)	(Supervisor)
Date: 21/09/2019	Date: /09/2019
	ngineering/ University of Baghdad
Signature: Name: Prof. Dr. Saba Jabbar Neamah Al-Khafaji	
Acting dean of college of Engineering	

<u>Dedication</u>

I would like to dedicate these words to:

To the one who taught me the first words of life...To those who guided me to the path of righteousness...To who helped me move forward...To **my** *dear father* who missed him so much ...

To **my dear mother** who has nurtured me for the love of goodness ... The prayer of my mother protects me all the time.

To my great family for their support and encouragement of my (*brothers and sisters*).

To my great heart (my *wife and my children*). Looking at your beautiful faces around me makes me overcome all the pain-difficulties ...You are all hope and love ...Your eyes are the umbrella of family devotions...My big heart full of your emotions and your feelings all times..

Ryad Tuma

<u>Acknowledgment</u>

Thank God for many blessings

At the scientific, Knowledge and practical level, I found myself having acquired a level of knowledge that has contributed to overcoming many difficulties during my research studies and I have the pleasure of dealing with professional people with a wide knowledge high experiences.

First of all, thank God.

My appreciation and gratitude to my supervisor (Asst. Prof. Dr. Hatem Khaleefah Breesam) for his appreciate guidance and completely support to the research work.

Thanks and appreciation to all members of my family for all their efforts in helping me during the stressful research work.

Special thanks to the experienced engineers who supported us with knowledge and extensive experiences, thanks again to (consultant engineers: Rasool Yaseen, Ra'ad Hommadi, Tameem Abdulzhar and Mr. Mohammed Jabar). Highly appreciation to the key management staff and the direct manager of the Missan Oil Company for Cooperation and facilitate the research tasks.

I would like to pass my appreciated words to (Dr.Saad Fahed, Dr.Abbas Oda and Mr. Hassan Najim) for their supportive advices. All the words of appreciation and respect to my Professors and Asst. Prof in the Department of Civil Engineering in engineering college -Baghdad university.

Researcher

<u>ABSTRACT</u>

Iraq acquired a huge development in the investments in the oil sector, which was accompanied by the establishment of many camps and control fields and the development of production oil. The facilities are being established by the same investing companies or by sub- contractors represent the basic infrastructure and main super-structures of companies operating in the oil industry. The process of investment and development of the oil industry has been accompanied by a range of outputs and negative impacts on the environmental and social levels. One of the main reason behinds those negative impacts that the traditional contracting system focus on the economic dimension and ignore the environmental dimensions plus societal effects of the oil industry and construction mechanisms. The research focused on how to build a comprehensive sustainable system in which sustainable standards are adopted as a basis for accelerating the application of laws and contracting methods, changing the methods of purchasing equipment, raw materials, industrial, construction, etc., and directing logistics operations which are one of the main axes of work in both oil companies and its facilities. The sustainable approach needs to be known in traditional legislative disciplines to help decision-makers identify the weaknesses needed to be strengthened and the places of force to be developed and overcome the obstacles and influencing factors associated with the establishment of a sustainable system. The study focused on the extrapolation of previous studies to determine the nature of the negative effects that hinder the preparation of the target system and the adoption of the field survey as a research formulation, starting with an open questionnaire to obtain outputs to be transferred to the closed questionnaire. The study has been identified the obstacles (stumbling blocks) and influenced factors which related to the research aspects in contracting operations, procurement procedures, logistic activities. Two main techniques have been used the first one (5whys) to reach to required actions to overcomes of stumbling blocks and second technique is focus group discussion (FGD) to overcome of influence factors via expert's opinions. Based on the practical outputs, a comprehensive system of the main stages of sustainability has been developed and formulated, which represents an extended series of project cases of various kinds that may be traditional in terms of design and contracting methods.

The proposed system can be tracked periodically to raise those projects to a higher grade of sustainability level. If the project is sustainable in terms of design and planning, the proposed system will help decision makers to take contractual action with implementing partners with experience in sustainable applications. The researcher has supported its proposed system by preparing and configuring the TPI-SS software applications software to track construction projects in the oil industry and the TPI-SS will contribute for improving position of the projects the sustainable path based on sustainable core criteria via proposed models. The proposed system is applied to a number of case studies to ensure the ease, accuracy, reliability and flexibility of its application. The evaluations of this application based on views of experts is 92% as its verification level. Adoption of the proposed system designed according to sustainable standards is to contributes in the creation of sustainable contract systems and procurement procedures as well as sustainable logistics activities that contribute to access to sustainable facilities in the oil industry.

CONTENTS

Subjects	PAGES
Abstract	I
List of Contents	111
List of Appendix	VII
List of Figure	VIII
List of Table	XI
List of Abbreviation	XIV

CHAPTER 1: INTRODUCTION

Subjects	PAGES
1.1-General	1
1.2- Background	1
1.3- Justification of Research Study	1
1.4- Formulation the Statements of Problem and Hypothesis	2
1.5- Research Objectives	2
1.6- Research Scope	3
1.7- Research Methodology	4
1.8 - Structure of Research	7
1.9- Previous Studies	8
1.10 Summery From Previous Studies	17

CHAPTER **2**: INITIATION OF INTEGRATED SUSTAINABLE SYSTEM.

Subjects	PAGES
2.1- Introduction	18
2.2- Literature Reviews	18
2.3- Sustainable Globally	18
2.4- Sustainable Orientation for Industrials	19

2.4.1 Sustainable Orientation for Construction Industry	20
2.4.2 Sustainable Orientation on Oil Industry	22
2.4.2.1 Statement of oil-locally	24
2.4.3 Compatibility-Sustainable Oil Industry	24
2.5 Justification for Sustainable Applications in Developing Countries	29
2.5.1 Head-Lines of Justifications	30
2.6 Sustainable Transformation over Project Life Cycle	33
2.7 Compartment sustainable Contracting Process	34
2.8 Current Iraqi Sustainable Considerations	34
2.8.1 General Outputs of Contracting Methods in Iraq	34
2.8.1.1 Facts Availability for Tendering Process in Iraq	36
2.8.1.2 Recap of Instructions Traditional Bidding	37
2.8.1.3 Considerations of Qualified Bids	38
2.8.1.4 Environmental and Safety Consideration Related with Tendering Process	38
2.9 Contracts and Sustainable Directions	40
2.9.1 JCT-Direction of Sustainable	40
2.9.2 FIDIC-Direction of Sustainable	41
2.10 Compartment Procurement Practices	43
2.10.1 Key Procurement Features in Iraqi Federal Budget	44
2.10.2 Threshold levels- Approval	44
2.10.3 Sustainable Procurement Platform	45
2.10.4 Sustainability Concordant with Procurement Instructions	46
2.10.5 Sustainable Exerting	46
2.10.5.1 Green- Public Procurement	47
2.10.5.2 Public Procurement- Innovation	48
2.10.5.3 Sustainable -Public Procurement	49

2.10.6 Adopting of ISO 20400:2017 (E) Sustainable Procurement	51
2.10.6.1 Appropriate Costs Analyze According to ISO 20400: 2017 (E)	51
2.11 Compartment sustainable Logistics Activities	52
2.11.1 Sustainable Associated with Logistics Activities	53
2.11.2 Sustainability Logistics Versus Mitigation of Costs	55
2.11.3 Fulfilling of sustainability with logistics activities	56
2.11.4 Integration of Logistics activities with sustainable Supply Chain	57
2.11.5 Drivers of Sustainable Logistics	57
2.12 Figuring of Stumbling Blocks	59
2.12.1 Framing of Stumbling Blocks associated with sustainable aspects	61
2.13 Factors associated with Integrated Sustainable	62
2.14 Focus Group Discussion an Interviews Techniques	63
2.14 Five-Whys Technique	65
2.15 Routing of Sustainable-Assessment	67
2.15.1 Perspective of Cost -Benefit Analysis in Sustainable Decision Making	67
2.16. Summary up of the chapter	69

CHAPTER 3: PRACTICAL AND STATISTICAL OUTCOMES

Subjects	PAGES
3.1- Introduction	71
3.2 Purpose of Data Acquisition	71
3.3 Identify of Elements of the questionnaire	71
3.4 Closed Questionnaire	75
3.4.1 Research Sample	76
3.4.1.1 Classification of Research Sample	77
3.4.2 Validity and Reliability	78
3.4.2.1 The Results of Reliability level	79

3.4.2.2 Using of Split Half Coefficient Re-Distribution Questionnaire	81
3.4.3 Statistical Analysis	81
3.4.3.1 Presenting of Personal Information	82
3.4.3.2 Statistical Orientation	85
3.4.3.3 Statistical Tools	85
3.4.3.3.1 Relative Importance Index (RII) Technique	87
3.4.3.4 Analysis Stumbling Blocks	88
3.4.3.4.1 Results of Stumbling Blocks associated with Contracting Processes	88
3.4.3.4.2 Stumbling Blocks (SB) associated with Procurement processes	89
3.4.3.4.3 Stumbling Blocks (SB) associated with Logistics processes	90
3.4.3.5 Influenced factors on each Identified Connotation	91
3.4.3.6 Core Criterions of sustainable System	94
3.4.3.6.1 Figuring out Core Criterions	97
3.5 Prioritization of Possible Action	99
3.5.1 Transposing of the Results obtained	100
3.5.1.1 Ranking of Stumbling Blocks	100
3.5.2 Adopting 5-Whys	102
3.5.3 Ranking of Influenced Factors	110
3.5.3.1 Features of FGD	111
3.5.3.1.1 Outcomes of FGDs	112
3.6 Possible Actions Based on Priorities	115
3.7 Chapter Summery	116

CHAPTER 4: Proposed- "Tracking Program for Integrating Sustainable System" (TPI-SS)

Subjects	PAGES
4.1- Introduction	117

4-2-Long-Term Objective of System Proposal	117
4.3-Initiation Phases	117
4.4-Promotion of Sustainable Considerations	120
4.5 Core Criterions for Sustainable	121
4.5.1 Core Criterions – Sustainability Contracting	121
4.5.2 Core Criterions – Sustainability Procurement	125
4.5.3 Core Criterions – Sustainability Logistics Activities	130
4.5.3.1 Planning for Sustainable Logistics	133
4.5.3.2 Hazards and Assets Disposal	135
4.5.3.2.1 Recommended Mitigation Measures	135
4.5.3.3 Aligning Logistics Model with Sustainable Precautions	136
4.6 Ability to Apply of Sustainable Orientations	137
4.6.1 Clarifications Ruler for Evaluation by Ability To Apply (A 2 A)	138
4.7 Proponents of Sustainable Decisions- Making	139
4.8Adoption of sustainable Policies, Regulations and Instructions	140
4.8.1 Required Sustainable Polices	140
4.8.2 Regulations and Instructions	141
4.8.3 Trend Towards Updating Legislation and Instructions	143
4.8.4 Hubs of update legislations and Instructions	143
4.8.5 Managing of Constraints	145
4.8.6 Sustainable Alternatives	148
4.9 Requirements of Commitment levels	148
4.10 Adaptation of Continuous Improvement	149
4.10.1 Required Assessment Aspects	150
4.10.1.1 Periodically Assessment	150
4.10.2 Resources Review	151

4.11 Dimensions of Costs and Effectiveness –Measures	155
4.11.1 Outcomes from Cost Variations Forms	158
4.12 Assessment Produced Waste via Disposal Model	159
4.13 Society-Related Impact Assessment	159
4.14 Improvement of Technical and Managerial Aspects	162
4.15 Cycle of Improvement	163
4.16 Integration in Interdependent Industrial	164
4.17 Enhancement of Documentation Styles	167

CHAPTER~5: TPI-SS Software Applications

Subjects	PAGES
5.1- Introduction	168
5.2 Features of the program	168
5.3 Mathematical program algorithm	169
5.4 Proposed Action Groups	170
5.5 Perspective of Benefit-Cost	172
5.6 Destinations of The Program	173
5.7 Simplifications of Program Interface	174
5.7.1 Program Instructions	175
5.8 Direction of Case-Studies via Program's Applications	176
5.8.1 Case Studies Background	177
5.8.2 Technical Action Groups	178
5.8.3 Delineating Panel of Outcomes	178
5.8.4 Sequence of the program	179
5.9 Evaluate The Proposed System Performance	183

CHAPTER 6: Conclusions and Recommendations

Subjects	PAGES
6.1- Introduction	186
6.2 Conclusions	186
6.3 Recommendations	188
6.4 Scope of Future Studies	191

APPENDICES

Details of APPENDICES	Symbol
QUESTIONNAIRE PANEL	А1 то А14
RESULTS OF QUESTIONNAIRE COMPONENTS	В 1 то В18
	С1-1 то С1-
	2
Forms of: (FGDs & 5-WHYS	&
& EXPERTS).	C2-1TO C2-
	11
	&

	C3
	D1
FORMS OF (GENERAL ORIENTED FORM AND PAF)	&
	D2-1 TO D2-
	3
DELINEATING PANEL OF OUTCOMES FOR EACH CASE	E1-E2
STUDIES	E I-E.Z
Performance Action Form (PAF)	F1
Software-Program-	G

LIST OF FIGURES

Number	Details of Figures	PAGES
1-1	Framework of the Research Methodology	6
2-1	Proposed Sustainable Construction- Framework	22
2-2	Image of the nature of some contracts/Agreements oil-related operation Globally.	23
2-3	Lowell center for sustainable production Indicator framework.	26
2-4	Strategic Sustainable and oil Industry Parts.	27
2-5	Sustainable Issues	28
2-6	Environment Kuzinets Curve	30

2-7	Assessing of sustainability in operation	33
2-8	Basis of threshold-approval levels	45
2-10	which contains the major steps and sub-routes of the process	50
2-11	Illustrated all aspect and overview of LCC approaches	52
2-12	Management of all elements involvement in treatment waste model	54
2-13	Framework of Sustainable Logistics.	55
2-14	Aspect of sustainable	56
2-15	Detail the Stages of the Supply Chain Distribution	57
2-16	Development of SCM and Transition into SSCM	58
2-18	Modeling of Pillars for Converting Construction Practices from Traditional to Sustainable	66
3-1	Process of Identity of Elements of Questionnaires.	72
3-2	Nationality Figures	82
3-3	Percentage of Experiences	83
3-4	Percentage of Engineering Specialization	84
3-5	Academic Degree	84
3-6	Percentages of Main Jobs	85
3-7	Core-Criterions of Sustainable Contracting process	95
3-8	Core- Criterions of Sustainable Procurements Procedures	96
3-9	Core- Criterions of Sustainable Logistics Activities	97
3-10	Framework in the Methodological Possible Actions Required.	100
3-11	Framing of FGD's Procedure.	111
4-1	Main Components of Tracking Process of Integrated Sustainable System	119
4-2a	Sustainable Contracting Process.	123
4-2b	Sustainable Contracting Process-part of awarded contract.	124
4-2c	Involvement Stage of Partners	125

4-3	Holistic approach for applications of sustainable procurement.	127
4-4	Checking the Internal material Documentation in the process.	128
4-5a	Preparing of Purchase Request	128
4-5b	Flowchart of Electronic Purchase Request (e-PR) online.	129
4-6a	First sections of framework for sustainable logistics actions.	131
4-6b	Integrating with inputs/outputs of via core criterions.	132
4-7	Aligning of Sustainable Logistics Model	136
4-8	S-CC Matching with Logistic Model	137
4-9	Illustrates the objectives associated with the Ability to Apply (A2A)	138
4-10	Details of A 2 A	139
4-11	Persuasibility of updated regulations	142
4-12	Administrative procedure to reduce the constraints	147
4-13	Scheme of information plus feedbacks lines.	152
4-14	Form of Review of Resources	154
4-15	The general assessment in the proposed system.	156
4-16	Diagram for cost –effectiveness Sequences.	157
4-17	Assessment Produced Waste via Disposal.	160
4-18	The steps of required assessment of the impacts associated with the Society.	162
4-19	Illustrates the importance of continuing improvement and development in the proposed system.	164
4-20	Actions cycle of interdependence of industrial	165
4-21	Documentation process in the sustainable system	167
5-1	General- Proposed Technical Action Groups	170
5-2	Flowchart of Program Application.	171
5-3	Users/Administration Interface	175
5-4	Shot-Screen of Instructions	176
5-5	Performance Action Form (PAF)	180

5-6	Anticipated length-time of move forward in the Proposed System Completely	181
5-7	Possible Action (PA) for contracting model very close to 25% scores	181
5-8	Cost-Benefit analysis of the case study via program sequence.	182
5-9	line of orientation towards performance	182
5-10	Anticipated length-time of move forward in the Proposed System Completely	184
5-11	Anticipated length-time of move forward in the Proposed System Completely. (Res.).	184

LIST OF TABLES

Number	Details of Table	PAGES
1-1	Summary of Guidelines -Seven Principles	1
1-2	The methodology used for government and non - governmental procurement for large companies.	11
1-3	Studies that clarify the legislation	13
1-4	lists out and scopes of conclusions via its Methodology	14
1-5	Objectives of previous studies that dealt with the aspect of sustainable logistics.	15
2-1	Includes the details of the stages for the process of construction.	20
2-2	Contaminants associated with oil Operations.	25
2-3	Summary of the main parts of the oil Industry	25
2-4	Summary of JCTs and FIDIC bonding with sustainability.	42
2-5	Imagine of elements associated with main pillars.	46
2-6	Vast Area of the application government expenditures	49
2-7	Different Level of Drivers for Sustainable Logistics	58
2-8	Details of Stumbling Blocks under each sections in the study	61
2-9	General Expected Criterions	69
3-1	Samples of open questionnaires	73
3-2	Group one: Factors associated on connotation of Integrated Sustain	73
3-3	Group Two: Factors associated on connotation of Integrated	74
3-4	Group Three: Factors associated on connotation of Integrated Commitments	74
3-5	Lakert Scale	76
3-6	Sample and Respondent's division	77
3-7	Validity via Test of Significant Level	78
3-8	Satisfy the outcomes through Correlation Coff.	80

3-9	Cronbach's Alpha for stumbling blocks	80
3-10	Cronbach's Alpha for Impact of all factors:	80
3-11	Cronbach's Alpha for Core Criterions:	81
3-12	The results of halves test values for stumbling blocks	81
3-13	The results of halves test values for influence Factors	81
3-14	The results of halves test values for Core Criterions:	82
3-15	Details of participants "Functional Specialization" with certificate attitudes.	83
3-16	illustrate Statistical Tools	86
3-17	Results of SB-Contracting	86
3-18	Results SB Procurement	89
3-19	Results SB Logistics	90
3-20	Results of Influenced factors associated with Integrated Sustain.	92
3-21	Results of Influenced factors associated with Integrated care	93
3-22	Results of Influenced factors associated with Integrated commitment.	93
3-23	Ranking of SB-contracting	101
3-24	Ranking of Stumbling Blocks (SB) associated with Procurement processes	101
3-25	Ranking of Stumbling Blocks (SB) associated with Logistics activities	101
3-26	Possible Actions to cope of the identified stumbling blocks associated with contracting process	102
3-27	Possible Actions to cope of the identified stumbling blocks associated with Procurement Applications.	105
3-28	Possible Actions to cope of the identified stumbling blocks associated with Logistics Activities	107
3-29	Transposing and Ranking of Impacts of the identified Factors on Connotation of Integrated sustain.	110
3-30	Transposing and Ranking of Impacts of the identified Factors on Connotation of Integrated Care	111
3-31	Transposing and Ranking of Impacts of the identified Factors on	111

	Connotation of Integrated commitments	
3-32	Pushing Forward - Actions for the influences of the high ranking factors on Connotation of "Integrated Sustain"	113
3-33	Pushing Forward - Actions for the influences of the high ranking factors on Connotation of "Integrated Care	114
3-34	Pushing Forward - Actions for the influences of the high ranking factors on Connotation of "Integrated Commitments	115
4-1	Questions to direct sustainable pillars in trucks procedure	134
4-2	Comparison of Title Costs	158
5-1	Outline of technical Action Groups	178
5-2	Explains Summary about the outcomes of A case study.	179
5-3	Illustrates Evaluation of Verification The Proposed Program	185

LIST OF ABBREVIATIONS

Abbreviations	Full Means
A2A	Ability to Ably
ΑΡΙ	American Petroleum Institute
AM	Arhmatic Mean
ATT	Area-Transshipments & Triage
BREEAM	Building Research Establishment Environmental Assessment Method
Cont.	Contract
Ccs	Core Criterions
Ccs-C	Core Criterions-contract
Ccs-P	Core Criterions-procurement
Ccs-L	Core Criterions-Logistics
С/В	Costs-Benefit
SCM	Supply Chain Management
СІВ	International Council for Building
CPL	Contracting, Procurement and Logistics

EU	European Union
Eco.	Economical
Env.	Environmental
e-PR	Electronic-Purchase Request
FGD/Is	Focus Groups Discussions/Interviews
FIDIC	International Federation of Consulting Engineers or in French (Fédération
	Internationale Des Ingénieurs-Conseils)
FPA	Forwarding-possible Action
GPP	Green Public Procurement
GSCM	Green Supply Chain Management
HVAC	Heating, Ventilation, Air-conditioning
HSE	Health Safety and Environmental
IPIECA	International Petroleum Industry Environmental Conservation Association
10.00	
IOGP	International Association of Oil & Gas Producers
ITT	Invitation to Tender
IFs	Influenced factors
ISO	International Organization for Standardization
IPT	Integrative Project Team
JCT	Joint Contracts Tribunal
LCA	Life Cycle Approach
LCSP	Lowell Center for Sustainable Production
LEED	Leadership in Energy and Environmental Design
LCC	LCC: Life Cycle Cost
Log.	Logistics
MoC	Misson Oil Company
	Missan Oil Company

OPEC	Organization of the Petroleum Exporting Countries
OECD	organisation for Economical Cooperation and Developments.
РА	Possible Action
PPI	Public Procurement Innovation
Proc.	Procurement
PR	Purchase Request
PAF	Performance Action Form
QA	Quality Assessment
QC	Quality Control
UN	United Nations
UNEP	United Nations Environment Programme
UNDP	United Nations Development Programme
USA	United States of America:
UK	United Kingdom
Ref.	References
RFT	Request For Tender
4Rs	Reduction, reuse, recycling and recovery
SPP	Sustainable -Public Procurement
SSCM	Sustainable Supply Chain Management
SBs	stumbling blocks
SPSS-IBM	Statistical Package for the Social Sciences- International Business Machines Corporation
SD	Standard Deviation
Soc.	Social
TPI-SS	Tracking program Integrated –Sustainable System
TQM	Total Quality Management

CHAPTER

SIX

CHAPTER SIX

Conclusions and Recommendations

6.1 Introduction

To reach the general concepts, this chapter is guided the scanning process to reflect the level of matching between on what extent the research reached from the principles of practical and applied scientific implications. For further illustration in this chapter the final via on outputs Conclusions/Recommendations/field annotations that can be studied in the future to represent the outlines of future research titles which are closely related to the importance of increasing the knowledge and awareness of interesting in the targeted modules are part of the proposed integrated system.

6.2 Conclusions

During the study in this specific topic that be a part of the achievement of the research objectives associated with the nature of the structure of the research, it is necessary to place all the general conclusions which are explained in the following points:

1- The suggested integrated sustainable system in one package is serving of the construction process in oilfield/Camps by give high attentions about (core criteria) such as sustainable owner's project requirements which got (87.7%) to be very important for contracting process.

- 2- Supportive core criteria are appeared to sustainable procurement procedures its range was (86.6%) for compliance all the suppliers and venders to low emissions and others. Recycle and reused contents and its packaging system was ranking over 80% all of these core criteria can support to build activities sustainable procurement in the integrated system in each oilfields/camps.
- 3- For sustainable logistics, many standards have emerged that exceed 80% such as water, energy and land use efficiency and alternative transportation. This reflect the high importance of logistics activities in both construction and oil-industry.
- 4- The methods and mechanisms of contracting foreign companies with local contractors to carry out the work of a degree suited to their experiences. The work is required transition from traditional aspects to sustainable approach.
- 5- The technical committees have to work on possible actions (PA) as treatments on each part of problems during the implementation stages of the integrated sustainable system.
- 6- Methods of selection participators in each processes and others is to assist the establishments of all sizes, activities and locations, to integrate sustainable process.
- 7- The limited evaluation of contractors/vendors/suppliers even transporters and logistics agents or the lack of a real methodology and a truly sustainable dimension contribute to the establishment of a sustainable local market and make the participants work in a competitive environment based on the benefit-based economy and cost analysis according to the principles of sustainability.

- 8- It has been reached in the adoption of the most appropriate standards such as: selection appropriate project based on human health and other standard. Iraqi projects in the oil industry through international standards related to the issues of contracting, procurement and logistics activities, which are familiarity with internationally.
- 9- The study reflected that technique of rigorous performance reflecting of measurements the importance of high performance evaluation and time allocation will make the system of work priorities and methods of achieving them in order to reach the required quality in the applications, it is necessary to know the roots of the problems and the main root associated with them in order to reach the goals of prioritization in an easy manner and enable companies to meet the requirements of the standard time, which must be subject to strict follow-up and scrutiny.
- 10- There are a few companies that have sufficient experience to apply the sustainable approach in an integrated manner and has the ability to employ it in a way that serves all contractual parties. Therefore, it required an indispensable action to develop the system of communication to exchange experiences in this field between foreign companies and local Iraqi companies to raise the efficiency of the application of the proposed system in the research.
- 11- The software (TPI-SS) specifies a comprehensive vision for decisionmakers through valuable values of sustainable criterions that represent sustainable basis that fits projects in the oil industry. Through values of outcomes, stakeholders can identify the best economic options that reflect environmental and social values.

12- The Integrated sustainability system in authority manner: - it is given a sustainable authority prestige in implementation by contractual parties according to their positions in the contractual power.

6.3 Recommendations

The necessary actions have been outlined recommendations that contribute to guiding government employers in setting the substantial steps in adopting a sustainable system in accordance with the requirements of sustainability.

- 1- Monitoring the consumption of water using renewable energy and maintaining the external environment and care of ventilation and make the internal air clean and reduce the emission of toxic gases and other applications that contribute to the creation of a work environment with a productive and non-pollutant and economic profitability reasonable to evaluate the performance of the final project according to these principles. In order to avoid the errors caused by traditional style of evaluation and the performance of projects according to the time, cost mechanisms, budget variations, level of adjusted the schedule the traditional management methods associated with the capacity of implantation. Neglecting the degree of effectiveness in evaluating the stages of the project in design, contracting and others the effectiveness, resources efficiency, and Competence of contractors to be the importance parts in the annual budget and compliance with full instructions. To meet with goal of sustainability in any case.
- 2- The specialized teams should be involved in the corresponding sections of the foreign companies operating in the oil sector.

- 3- Recommending for the development of the department of contracts through the preparation of contracting. The foundations established the head of the pyramid drafting all kinds of contracts.
- 4- Recommending the work of the department to support the processes of preparation and development within the oil companies as well as the companies supporting them to take advantage of the proposed system outputs and core criterions adopted in the study.
- 5- The functions, plans and mechanisms of research and development of the Ministry of Oil. The sustainable criteria should be taken as priority in the formulation of development plans and scientific research to contribute to solving the environmental and economic problems associated with construction projects and in the oil industry in general.
- 6- To recommend to managers and executives to give importance to contracting methods and mechanisms of choice of contractors and contractors, logistics agencies and also the high interest companies for advisory services and the methods of selection and evaluate based on the sustainable approach to include international and local companies.
- 7- To encourage construction companies to recycle materials and construction waste according to policy and sustainability and optimal use of energy and water. Otherwise, the environmental fines system will be applied to oil companies and the use of methods of compensation for environmental damage resulting from the work of foreign companies and companies in order to support it and this will contribute to raising the level of real interest In environmental and community requirements.

- 8- Raising preventive awareness of logistics companies and local carriers in projects for construction materials and chemicals as well as developing sustainable transport mechanisms by increasing the level of control over the activities of logistics companies. As well as recommend attention to the designs of warehouses and make them part of the methodology of analysis of logistics contracts to upgrade the level of construction of warehouses companies in oil camps.
- 9- One important conclusion is to involve the local labors/staff and those interested in the construction sector and oil together to reach the possible solutions that are considered as a guide to the development of the system in the workshop to continue the development of field work methods to achieve efficiency in the application. To reduce the gap between conventional contractual methods and the new trend towards contracting methods governed by sustainable applications.
- 10-To encourage the oil companies to partner in government information to develop the tasks of tracking and monitoring traditional systems and to continue this partnership to be long-term with large foreign investment companies to cope with the rapid change in the sustainable aspects of the design and contracting systems and then the activities related to procurement and supply of materials and logistics in the industrial A state of industrial integration between the international and local partners.

6.4 Scope of Future Studies

In a very important way, research should reflect some studies that will contribute to establishing the main rules of the work environment in the oil sector or other industrial sectors as well as constructions and can be summarized as follows:

- 1- A study on the measurement of compliance of companies with monitoring and development plans according to indicators monthly and semi-annually and annually to note the deviation from sustainable criteria to return to the mechanisms of environmentally and economically.
- 2- Study contributes to the development of rules for measuring and evaluating the competitive market according to sustainable concepts.
- 3- A comparative study of a set of case studies according to the optimal method of selecting sustainable applications, taking into consideration the setting of suitable determinants for the work environment in Iraq.
- 4- Analysis and monitoring of industrial outputs in oil companies and the work of simulation program with the sustainable reality of the knowledge of the degree of variation and impact industrial output.
- 5- Contributing to the establishment of a research program facing e mail developed to be a major recipient of the problems and converted to a program linked to electronic interface inputs to activate ways to address these problems through experts participating in the program.
- 6- Field study of the reality of international oil companies The aim of this study is to establish the basis for decision making and the mechanisms for adopting sustainable applications.
- 7- The study shows the importance of adopting creative ideas on the development of sustainable applications in terms of energy, water, pollution, materials, management of sources, climate impacts. The mechanisms of contracting methods can be evaluated on a periodically the contractors by using sustainable core criteria.
- 8- The research achieved its objectives of finding treatments and changing the traditional method of procurements logistic activities is

to be more active. The research provides a most powerful areas of the path of sustainability in an integrated system has become one of the necessities of life in the renewed world.

REFERENCE

<u>REFERENCE</u>

- Asood Qqder.A . (2016). كتابه :تاثير التلوث البيئي على راس المال البشري .The Effect of Environmental Pollution on Human Capital . Zain Legal Publication, ISBN: 9786144361351 -PP (18-30).
- 2) Abdul Salam Jameel Ali M. Al-Zobaee . (2015). Modeling of critical success factors in construction projects (Governmental projects as a case study) . Baghdad: ph.D thisis.
- 3) Adams, R., Bessant, J., Jeanrenaud, S., Overy, P., & Denyer, D. . (2012). Innovating for sustainability: . systematic review of the body of knowledge., Report:1-10.
- Adetunji, I., Price, A. D. F., & Fleming, P. (2008). Achieving sustainability in the construction supply chain. Proceedings of the Institution of Civil Engineers -Engineering Sustainability, 161(3), 161–172. doi:10.1680/ensu.2008.161.3.161.
- 5) Akwetey, L. M. (2011). Business administration for students & managers. rafford Publishing., (p 195).
- 6) Al Hathloul, S. (2004). Planning in the Middle East, moving toward the future. . Habitat International, , 28(4).
- Alas, R., Kraus, A., & Niglas, K. (2009). Manufacturing strategies and choices in cultural contexts. Journal of Business Economics and Management, 10(4), 279-289.
- Ali Salman Mehdi. (2017). Developing a Management System for Assessing Dam Safety in Iraq. Baghdad: Ph.d-thesis.
- 9) Aljasani ، Nasreen Owad. (2010). (م التلوث المهوائي في البيئة الع ا رقية مسببات ونتائج) . (، التلوث المهوائي في البيئة الع ا رقية مسببات ونتائج) . (، التلوث المهوائي في البيئة الع الع المعلوم Alqadisyia Journal for sience , Vol. 13 No.1-4.
- 10) Alukal, G. (2007). Lean kaizen in the 21st century. Quality progress, 40(8), 69.
- 11) American Petroleum Institute (API). (2014). American Petroleum Institute . websites. of American Petroleum Institute , p.1,3,4.
- 12) Arab oil and natural gas. (2012). "Contract Types in the Oil Industry".
- 13) Ballou, R.H. (2004). Business Logistics/Supply Chain Management, . 5th ed., Pearson Education, Upper Saddle River, NJ., PP:5-16.
- 14) Bamgbade, J. A., Kamaruddeen, A. M., & Nawi, M. N. M. (2015). Factors influencing sustainable construction among construction firms in Malaysia: A preliminary study using PLS-SEM. Revista Tecnica De La Facultad De Ingenieria Universidad Del Zulia . (Technical Journal of the Faculty of Engineering, TJFE), ., 38(3), 132-142.

- 15) Beiriz, F., & Haddad, A. (2011). An Application Model for Sustainability in the Construction Industry. In Environmental Management in Practice.-IntechOpen., PP: (276).
- 16) Betiol, Luciana Stocco; Uehara, Thiago Hector Kanashiro; Laloe, Florence Karine; Appugliese, Gabriela Alem; Adeodato, Sergio; Ramos, Ligia; Neto, Mario Prestes Monzoni. (2015). Sustainable procurement: The power of public and private consumption. Public Administration and Citizenship Program., PP:14-34:ISBN 9788587426314.
- 17) Bolton, P. . (2008, Feb). Protecting the environment through public procurement: The case of South Africa. Oxford, UK: Blackwell Publishing Ltd., Vol. 32, No. 1, pp. 1-10.
- 18) Boxenbaum, E., Georg, S., de Linde, G. G., Reijonen, S., Aggeri, F., Acquier, A., ... & Béjean, M. (2010). nnovation in Sustainable Construction: Eco-Cities and Social Housing in France and Denmark. In Constructions Matter-Managing Complexities, . Decisions and Actions in the Building Process, (pp. 1-50).
- 19) Byrne, P. J., Ryan, P., & Heavey, C. (2013). Sustainable logistics: a literature review and exploratory study of Irish based manufacturing organizations. International Journal of Engineering and Technology Innovation, 3(3), 200.
- 20) Byrne, P. J., Ryan, P., & Heavey, C. (2013). Sustainable logistics: a literature review and exploratory study of Irish based manufacturing organizations. International Journal of Engineering and Technology Innovation, 3(3), 200.
- 21) Capra, F. (2015). The systems view of life a unifying conception of mind, matter, and life. Cosmos and History. The Journal of Natural and Social Philosophy, , 11(2), 242-249.
- 22) Carin Labuschagne a, Alan C. Brent b. ((2005)). Sustainable Project Life Cycle Management: the need to integrate life cycles in the manufacturing sector. . International Journal of Project Management, 23: 159–168.
- 23) Carter K & Fortune C. (2007). Sustainable development policy perceptions and practice in the UK social housing sector. Construction Management and Economics, 25(4), 399–408.
- 24) COM . (2008). "Public procurement for a better environment"). https://eurlex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52008DC0400.
- 25) -Costantini, V.; Monni, S. (2008). "Environment, Human Development and Economic Growth". Ecological Economics., 64 (4): 867–880. doi:10.1016/j.ecolecon.2007.05.011. hdl:10419/73989.
- 26) Cuturela, S. C., & Manole, A. (2013). A Short Historical Perspective on the Evolution of Logistics and its Implications for Globalization. Romanian Statistical Review., (P 27).

- 27) Dana Schweitzer, Irv Salmeen, . (2011). (Oil Companies and Sustainability: More than Just an Image?) . at https://deepblue.lib.umich.edu/bitstream/handle/2027, 42/77607.
- 28) Dey, A., LaGuardia, P., & Srinivasan, M. (2011). Building sustainability in logistics operations: a research agenda. Management Research Review, 34(11), 1237-1259.
- 29) Dietrich, Bill. . (1990.). "Our Troubled Earth Japan." The Seattle Times. . studylib.net, Page F-2.
- 30) Dima, I. C., Grabara, J., & Modrak, V. (2014). Sustainable logistics and business competitiveness. International Letters of Social and Humanistic Sciences, 15 (2), 148-156.
- 31) Dr. Hussein Al-Rubaie . (2017). "The state of the oil industry in Iraq". The article available on http://www.hdf-iq.org/ar/, 01-29/1028.
- 32) Dulaimi, M. F., Nepal, M. P., & Park, M. (2005). A hierarchical structural model of assessing innovation and project performance. Construction Management and Economics, 23(6), 565-577.
- . https://mawdoo3.com . معوقات التنمية المستدامة .(Nov,2016). معوقات التنمية المستدامة .(Bran Alhiari
- 34) en.wikipedia.org/wiki/ISO_14000#ISO_14001_standard. (n.d.).
- 35) Ereiba, Y H, Glass, J and Thorpe, T. (2004). TBY using focus groups in construction management research. In: Khosrowshahi, F (Ed.), 20th Annual ARCOM Conference, 1-3 September 2004, . Heriot Watt University. Association of Researchers in Construction Management, , conference paper.
- 36) Fellows R and Liu A . (1997). Research Methods for Construction. . London: Blackwell.
- 37) Florea, L., Cheung, Y. H., & Herndon, N. C. (2013). For all good reasons: Role of values in organizational sustainability. Journal of Business Ethics, , 114(3), 393-408.
- 38) Fraj-Andres E, Martinez-Salinas E (. (2009). Factors affecting corporate environmental strategy in Spanish industrial firms. Bus Strat Environ, 18: 500-514.
- 39) Fritjof Capra, et al. (2017). A Conceptual Framework for Ecological Economics. International Journal of Social Economics, Vol. 44, No. 6, pp. 831-844, 2017.
- 40) G. Ofori and P. Chan. (June-1998). Procurement Methods And Contractual Provisions For Sustainability In Construction. conference paper-Proceedings CIB World Building Congress,, 7-12.
- 41) G. Ofori and P. Chan. (1998). Procurement Methods And Contractual Provisions for Sustainability In Construction). conference online, paper, PP1-8.

- 42) Gauthier, J., & Wooldridge, B. (2012). Influences on sustainable innovation adoption: evidence from leadership in energy and environmental design. . Business Strategy and the Environment,, 21(2), 98-110.
- 43) Global Footprints org. (2018). What is sustainability? LONDON from www.globalfootprints.org: Humanities Education Centre 2009.
- 44) Goodhew, S. . (2016). Construction-related sustainability, Sustainable Construction Processes, . A resource text. John Wiley & Sons., 143–187. doi:10.1002/9781119247937.ch5.
- 45) GROSSMAN, G. M & et al ; KRUEGER, A. B. (1995). Economic growth and the environment. The Quarterly Journal of Economics,,V.110, n.2, 1995.
- 46) Grossman, G. M.; Krueger, A. B. (1991). "Environmental impacts of a North American Free Trade Agreement". National Bureau of Economic Research Working, Paper 3914, NBER. doi:10.3386/w3914.
- 47) Guest, G., Namey, E., & McKenna, K. (2016). How Many Focus Groups Are Enough? Building an Evidence Base for Nonprobability Sample Sizes. Field Methods. doi:10.1177/1525822x16639015., 29(1), 3–22.
- 48) Guest, G., Namey, E., Taylor, J., Eley, N., & McKenna, K. (2017). Comparing focus groups and individual interviews: findings from a randomized study. . International Journal of Social Research Methodology, 20(6), 693-708.
- 49) Gupta, S., Omkar, D. and Palsule, D. . (2011). Sustainable supply chain management: review and research opportunities'. IIMB Management Review, , Vol. 23, No. 4, pp.234–245.
- 50) Gurel, O., Acar, A. Z., Onden, I., & Gumus, I. (2015). Determinants of the green supplier selection. Procedia-Social and Behavioral Sciences, 181, 131-139.
- 51) Hadeel J., and Nadoa Jawad, 2017. (2017). Developmental of Oil Industry and ist Reflection on Environment in Iraq),. Journal of Economic Seicne, Basra pp:23-43.
- 52) Halliday S. (2008). Sustainable construction. New York: (1st edn), Butterworth Heinemann.
- 53) Hartman, J. C. (2007). Engineering Economy and the Decision Making Process, . London-Pearson Prentice Hall: Upper Saddle River.NJ,.
- 54) http://fidic.org/node/5805. (2013). SDC-Sustianble development committee & PSM.
- 55) https://en.wikipedia.org/wiki/ISO_45001. (n.d.).
- 56) https://en.wikipedia.org/wiki/OHSAS_18001. (n.d.).
- 57) Hubbard, Raymond; Lindsay, R. Murray . (2008). "Why P Values Are Not a Useful Measure of Evidence in Statistical Significance Testing.". Theory & Psychology, 18 (1): 69–88.doi:10.1177/0959354307086923.

- 58) Huluka, D., & Popov, O. . (2012). Root cause analysis of session management and broken authentication vulnerabilities. In World Congress on Internet Security , (WorldCIS-2012) (pp. 82-86). IEEE.
- 60) Ibtisam Abduljabbar Abdulridha. (2017). DEVELOPING A FRAMEWORK FOR INTEGRATING SUSTAINABILITY WITH BUILDING REGULATIONS FOR. Baghdad: pg.D these.
- 61) Iles, D., & Ryall, P. (2016). How can the United Kingdom construction industry implement sustainable procurement strategies? . Proceedings of the 32nd Annual ARCOM Conference, ARCOM 2016, 2(September), (1121–1130.
- 62) Inga Geach, (2016). Investigating the Role of Sustainability in Contractor Selection and Evaluation. Sustainability scholarship -Willmott Dixon, Thesis form, 15-22.
- 63) Institute for Public Procuremen. (2016). The Institute for Public Procurement. "NIGP - www.nigp.org.
- 64) J.Sin, G.K. Chen,S.T. Wee, G.H. Hwang, . (2013). Challenges in adopting sustainable materials in Malaysian construction industry, . InternationalConference on Sustainable Building Asia (SB13 SEOUL), MATEC Web of Conferences,, 47 (050-21).
- 65) Jaeger, C. C., Paroussos, L., Mangalagiu, D., Kupers, R., Mandel, A., Ta´ bara, J. D., ... Lass, W. (2011). A new growth path for Europe. Generating prosperity and jobs in the lowcarbon economy. Potsdam, Germany: Final report. European Climate Forum, .
- 66) Jain, R., Grabner, M., & Onukwugha, E. (2011). Sensitivity Analysis in Cost-Effectiveness Studies. PharmacoEconomics,, 29(4), 297–314. doi:10.2165/11584630.
- 67) JCT. (2011). Sustinable directions. London: https://corporate.jctltd.co.uk/initiatives/sustainability/.
- 68) Kalubanga, M. (2012). Sustainable procurement: concept, and practical implications for the procurement process. International Journal of Economics and Management Sciences, Vol.1 No. (7), 01-07.
- 69) Kawther Mohammed Dheim, Jafer.T Ahmed. (2012). Iraqi oil policy and its role in its economy " (A comparative study). Master Thesis.P15-22.
- 70) Kewill, . (2008). Logistics and Transport Industry Environmental Survey," Transport Intelligence, Available from:http://www.supplychainstandard.com/liChannelID/16/Articles/1876/Kewill +Green+Logistics+Survey., (3-6).

- 71) Kibert, C. J.,. (2005). Sustainable construction: green building design and delivery. books- Hoboken, New Jersey: John Wiley and Sons., P 433-445.
- 72) Korkmaz, S. (2012). Case-Based and Collaborative-Learning Techniques to Teach Delivery of Sustainable Buildings. Journal of Professional Issues in Engineering Education and Practice. ASCE, 138(2): 139–144. doi:10.1061/(ASCE)EI.1943-5541.0000090.
- 73) Krueger, R. A. (2004). Focus groups: A practical guide for applied research. 5th edition, USA: Sage publications.
- 74) Laager. (Cairo, May, 2007). Corporate Governance : A risk perspective, paper presented to : Corporate Governance and Reform : Paving the Way to Financial Stability and Development . conference organized by the Egyptian Banking Institute, Conference paper.
- 75) Langford, J and McDonagh, D. (2003). Focus Groups: Supporting Effective Product Development. London: Taylor and Francis.
- 76) Lee, K. H., & Wu, Y. . (2014). Integrating sustainability performance measurement into logistics and supply networks: A multi-methodological approach. The British Accounting Review,, 46(4), 361-378.
- 77) Leland Blank, Anthony Tarquin, . (2012). ENGINEERING ECONOMY. In L. Blank, ENGINEERING ECONOMY). (pp. 7th EDITION, P 228-250.). Americas, New York . NY.: Published by McGraw-Hill, ISBN 978-0-07-337630-1 & MHID 0-07-337630-2.
- 78) Lieb, K. J., & Lieb, R. C. ((2010)). Environmental sustainability in the thirdparty logistics (3PL) industry. International Journal of Physical Distribution & Logistics Management, 40(7), 524-533.
- 79) Lin, C. Y., & Ho, Y. H. (2008). An empirical study on logistics service providers' intention to adopt green innovations. Journal of technology management & innovation, , 3(1), 17-26.
- 80) Lin, D., Hanscom, L., Murthy, A., Galli, A., Evans, M., Neill, E., ... & Wackernagel, M. (2018). Lin, D., Hanscom, L., Murthy, A., Galli, AEcological Footprint Accounting for Countries: Updates and Results of the National Footprint Accounts, . Footprint org., Resources, 7(3), 58.
- 81) Lin, T. T., Hsu, S. Y., & Chang, C. C. (2009). Evaluation of Decision-Making for the Optimal Value of Sustainable Enterprise Development under Global 100 Index Thinking. Sustainability, International Sustainability, 11(4), 1106.
- 82) Litosseliti, L. (2003). Using Focus Groups in Research. London: Continuum.
- 83) Liu, Z., Chen, Y., Bash, C., Wierman, A., Gmach, D., Wang, Z., ... & Hyser, C. (2012). Renewable and cooling aware workload management for sustainable data centers. In ACM SIGMETRICS Performance Evaluation Review, Vol. 40, No. 1, pp. 175-186). ACM.

- 84) Lu et al. (2015) Lu, Y. L., N. Nakicenovic, M. Visbeck, and A. Stevance. . (2015). Five priorities for the UN Sustainable Development Goals. . UN web, 520: 432–433.
- 85) Meade, L., Sarkis, J. and Presley, A. (2007). "The theory and practice of reverse logistics", . International Journal of Logistics Systems and Management,, Vol. 3 No. 1, pp. 56-84.
- 86) Meervat R. Wali. (2015). Optimal Selection of Investment and Traditional Contracts For Infrastructure Projects in Iraq. Baghdad: ph.d thesis.
- 87) Mills JH, Waite TA . (2009). "Economic prosperity, biodiversity conservation, and the environmental Kuznets curve". Ecological Economics., 68 (7): 2087– 2095. doi:10.1016/j.ecolecon.2009.01.017.
- 88) Ministry of Oil-Iraq. (2010,2014). جولات التراخيص. Baghdad-Iraq: www.oil.gov.iq.
- 89) Minstery of planning. (2016). contracting and law. Baghdad: https://mop.gov.iq/en/.
- 91) MOhmaed Hussain Abo Alwala. (2004). ديكتاتوريه العولمه. Madboli Lib., Qairo, PP:21-27.
- 92) Mohsin, A. H., & Al-Geelawee, E. K. (2016). APPLYING SUSTAINABILITY PRINCIPLES IN THE SELECTION OF BUILDING MATERIALS FOR BUILDINGS CONSTRUCTION. Journal of Engineering and Sustainable Development, 20(5), 156-171.
- 93) Murugaiah, U., Jebaraj Benjamin, S., Srikamaladevi Marathamuthu, M., & Muthaiyah,. (2010). Scrap loss reduction using the 5-whys analysis. . International Journal of Quality & Reliability Management, , 27(5), 527-540.
- 94) Nicholas, Michael J. (January 28, 2005). Towards Sustainable Process Contracting: The Case of the Glass Industry. Sustainable Development in Practic, 344–366-doi:10.1002/0470014202.ch11.
- 95) Ochieng, E. G., Wynn, T. S., Zuofa, T., Ruan, X., Price, A. D., & Okafor, C. (2014). Integration of sustainability principles into construction project delivery. . Puplisher : OMICS, 3 (1), DOI: 10.4172/2168-9717.1000116.
- 96) Ohno, T. (1988). Toyota Production System: Beyond Large-scale Production,. Productivity Press,, Cambridge, MA, p. 3.
- 97) opec.org. (2011). https://www.opec.org/opec_web/static_files_project/mediaWOO_2011--American Petroleum Institute. "Industry Sectors." http://www.api.org/aboutoilgas/sectors. opec.org, P,1,2.

- 98) Panayotou, T. (1993). Empirical tests and policy analysis of environmental degradation at different stages of economic development. International Labour Organization, (No. 992927783402676).
- 99) Paul Louangrath,. (2015). "Common Statistical Tables". DOI: 10.13140/RG.2.1.2206.5769 available .
- 100) Piecyk, M., Browne, M., Whiteing, A., & McKinnon, A. (2015). Green logistics: Improving the environmental sustainability of logistics. Kogan Page Publishers., PP(108-121).
- 101) Powmya, A. N.Z. Abidin, (2014). The Challenges of Green Construction in Oman, International Journal of Sustainable Construction Engineering & Technology, 5,1,2014, 33-4.
- 102) Pylipow, P. E., & Royall, W. E. (2001). Root cause analysis in a worldclass manufacturing operation. . Quality, 40(10), 66.
- 103) Ruparathna, R., & Hewage, K. ((2015b)). Sustainable procurement in the Canadian construction industry: current practices, drivers and opportunities. . Journal of Cleaner Production, 109, 305–314. http://doi.org/10.1016/j.jclepro.2015.07.007.
- 104) Ruparathna, R., & Hewage, K. . (2013). Review of contemporary construction procurement practices. Journal of management in engineering,, 31(3), 040-14.
- 105) Ruth Kelly, David Miliband, Alistair Darling, Douglas Alexander. (2007). Planning for a Sustainable Future. White Paper. Online: www.gov.uk., 11-13.
- 106) Ruth, F. J. (2015). Improving problem detection and focus for root-cause analysis through case-based reasoning and group decision support systems . University of Twente, (Master's thesis).
- 107) Rydin, Y. (12 December 2006.). Reassessing the role of planning in delivering sustainable development. Sustainability and the Built Environment, RICS, London, SDRN/RICS Lecture.
- 108) Sahar.K.Mohammed. (2011). الاليـــــات الواجب توفر ها لانتقال العراق من الاقتصاد (2011). المخطط الــــى اقتصاد الســـوق . Iraqi centerla Bank- Directorate Statistical and Research- Department of Macroeconomics and Monetary Policy. — available on (www.cbi.iq/documents), PP:(10-12).
- 109) Saleh, M. S., & Alalouch, C. (2015). Towards Sustainable Construction in Oman: Challenges & Opportunities. Procedia Engineering,, 118, 177–184. doi:10.1016/j.proeng.2015.08.416.
- Salim AbouShaban . (2008). "Factors affecting the performance of construction projects in Gaza Strip". Master thesis. Isalm University, PP:111-113.

- 111) Samar Khairy Morsy Ghanem. (2013). Obstacles for Sustainable Development in Islamic Countries An Analytical Study of the Arab Republic of Egypt . Arab Journal, PP:1-22.
- 112) Sarkis, J., Meade, L. M., & Presley, A. R. (2012). Incorporating sustainability into contractor evaluation and team formation in the built environment. Journal of Cleaner Production,, 31, 40-53.
- 113) Sarkodie, S. A., & Strezov, V. . (2018). Empirical study of the Environmental Kuznets curve and Environmental Sustainability curve hypothesis for Australia, China, Ghana and USA. . Journal of cleaner production, , 201, 98-110.
- 114) Schneider, Jennifer, et al. (2011). "An Analysis of Reported Sustainability-Related Efforts in the Petroleum Refining Industry. The Journal of Corporate Citizenship, .44 (2011):(69.).
- 115) Schneider, Jennifer; Ghettas, Salim; Merdaci, Nacer; Brown, Mervin; Martyniuk, Joseph; Alshehri, Waleed; and Trojan, Anthony. (2013). "Towards Sustainability in the Oil and Gas Sector: Benchmarking of Environmental, Health, and Safety Efforts," . Journal of Environmental Sustainability, Vol. 3: Iss. 3, Article 6. PP: 103-117.
- 116) Shafik, Nemat. . (1994). Economic development and environmental quality: an econometric analysis. Oxford Economic, Papers 46 (October): 757–773.
- 117) Shaker M. Ahmed. (2012). "Petroleum Industry Risk". the Institute of Oil, Baghdad. : Arab oil and gas site-.
- 118) Smokers, R., Tavasszy, L., Chen, M., & Guis, E. (2014). Options for competitive and sustainable logistics. In Sustainable Logistics. Emerald Group Publishing Limited., (pp. 1-30).
- Srisorn, W. . (2013). The benefit of green logistics to organization. .
 International Journal of Social, Human Science and Engineering, , 7(8), 1182-1185.
- 120) Stephen R. Coffey. (2007). Priority Management (5th Edition), Saudi Arabia: Jarir Bookstore, , p15 & 61.
- 121) Steve Goodhew . ((April,2016)). Sustainable Construction Processes: A Resource Text. John Wiley & Sons, Ltd.DOI:10.1002/9781119247937. , (Ch2 pp: 24-25).
- 122) Sustinable Logistics. (n.d.). https://en.wikipedia.org/wiki/Logistics.
- 123) Tamulis, V., Guzavičius, A., & Žalgirytė, L. . (2012)). Factors influencing the use of green logistics: theoretical implications . Economics and management, 17(2), 706-711.

- 124) Siegel N. John Castellan Jr. ((January 1, 1988)). (Nonparametric Statistics for The Behavioral Sciences), . McGraw-Hill Humanities/Social Sciences/Languages; , 2 edition.
- Sourani, A., & Sohail, M. (2011). Barriers to addressing sustainable construction in public procurement strategies. Engineering Sustainability,, ES4(2010), 229–237. http://doi.org/http://dx.doi.org/10.1680/ensu.2011.164.4.229.
- 126) Tepic, J.; Tanackov, I.; Stojić, Gordan. (2011). "Ancient logistics historical timeline and etymology". Technical Gazette., 18 (3).
- 127) Testa, F., Annunziata, E., Iraldo, F., & Frey, M. (2016). Drawbacks and opportunities of green public procurement: an effective tool for sustainable production. Journal of Cleaner Production,, 112, 1893–1900. http://doi.org/10.1016/j.jclepro.2014.09.092.
- 128) Thiell, M., Zuluaga, J., Montanez, J., van Hoof . (2011). Green Logistics Global Practices and their Implementation in Emerging Markets, . Colombia, p. 2, Colombia.
- 129) Tianqi Li1, Tony Roskilly, Dr. YaoDong Wang. (Conference Paper At California). "A Life Cycle Approach to Sustainability Assessment on Community Energy Projects in the UK". ACEEE Summer Study on Energy Efficiency in Buildings. 2016, PP:11:1-11:12.
- 130) Tonelli, F., Evans, S., & Taticchi, P. (2013). Industrial sustainability: challenges, perspectives, actions. . International Journal of Business Innovation and Research, , 7(2), 143. doi:10.1504/ijbir.2013.052576.
- 131) Varnäs, A., Balfors, B., & Faith-ell, C. (2009). Environmental consideration in procurement of construction contracts: current practice, problems and opportunities in green procurement in the Swedish construction industry. Journal of Cleaner Production, , 17, 1214–1222. http://doi.org/10.1016/j.jclepro.2009.04.001.
- 132) Varnäs, A., Balfors, B., & Faith-ell, C. ((2009).). Environmental consideration in procurement of construction contracts: current practice, problems and opportunities in green procurement in the Swedish construction industry. Journal of Cleaner Production, 17, 1214–1222. http://doi.org/10.1016/j.jclepro.2009.04.001.
- 133) Veleva, V., & Ellenbecker, M. . (2001). Indicators of sustainable production: framework and methodology. . Journal of Cleaner Production, 9(6), 519–549. doi:10.1016/s0959-6526(01)00010-5.
- 134) Walker H, Brammer S. . (2009). Sustainable procurement in the United Kingdom public sector. . Supply Chain Manage Int J. , 14:128–137.

- 135) Wang, C. N., Ho, H. X., Luo, S. H., & Lin, T. F. (2017). An Integrated Approach to evaluating and selecting green logistics providers for sustainable development. Sustainability: MDPI, 9(2), 218.
- 136) Wittstruck, D., & Teuteberg, F. (2012). Understanding the success factors of sustainable supply chain management: empirical evidence from the electrics and electronics industry. Corporate Social Responsibility and Environmental Management, 19(3), 141-1.
- 137) Wolf, C., & Seuring, S. (2010). Environmental impacts as buying criteria for third party logistical services. International Journal of Physical Distribution & Logistics Management, 40(1/2), 84-102.
- 138) world bank Org. (2017). Public Documents . pubdocs.worldbank.org.
- 139) www.greenlogistcs.org. (n.d.).
- 140) العقود ولاتراخيص النفطيه. (2015). contract featuers of bidding investment in oilfield in Iraq. http://www.moo.oil.gov.iq/PCLD/PCLD/contractus&company.html.